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Abstract

Dementia is a heterogeneous and non-curable condition with multiple distinct subtypes
including Alzheimer’s disease (AD) and Lewy body dementia (LBD) among others. As of
today, all clinical trials aiming to reverse dementia have failed, and this failure is partly
attributed to late intervention and heterogeneity of the disease. Accurate diagnosis of
dementia subtypes in clinical setting, particularly at early stages, is difficult due to the
subtypes manifesting similarly at initial disease onset. Patients’ true disease subtype can
currently only be confirmed via brain autopsy, post-mortem. In this work, we focus on
detection of autopsy confirmed dementia subtypes at early stages. Specifically, looking at
patients’ clinical data with mild cognitive impairment stage (Cognitive Dementia Rating
global score of 0.5 or 1), we build machine learning models that can differentiate autopsy-
confirmed pure AD, pure LBD, the Lewy body variant of AD, and other subtypes. We
compare our results against the clinical diagnosis of the subtype done at the early stage
at a clinical visit. Our analysis based on data of 40,858 patients in National Alzheimer’s
Coordinating Center (NACC) longitudinal cohort indicates that First: Mixed dementia
is significantly under-diagnosed by clinicians, and Second: Machine learning can improve
accuracy of diagnosis of mixed dementia by a large margin, while matching the accuracy
of clinicians for pure AD. Our analysis and code is open-source and available at: https:

//github.com/NYUMedML/NACC_Dementia_Subtypes

Keywords: Dementia Subtypes, Alzheimer’s disesase, Lewy body dementia, Mixed De-
mentia, NACC dataset, Multiclass Logistic Regression, Multilayer Perception

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for 60% to 80%
of demented cases (Scheltens et al., 2016). Patients with AD suffer from brain atrophy, which
leads to memory loss, language problems and declining problem-solving abilities. Until now,
the cause of AD has not been fully understood, which makes AD hard to diagnose and
treat. Pathologically, AD is closely related to the distribution of abnormal amyloid and
tau proteins in the brain, along with neurodegeneration. Genetically, patients with APOEε
gene can progress to more severe stages faster than those ones without it (Scheltens et al.,
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2016; Williams et al., 2013). Moreover, lifestyle factors like diabetes, obesity, smoking and
low educational level can also contribute to AD.

Lewy body dementia (LBD) is the second most prevalent dementia subtype (Walker
et al., 2015; Mueller et al., 2017). Patients with LBD often experience visual hallucinations,
anxiety, depression, and extrapyramidal effects when exposed to antipsychotics (Walker
et al., 2015; Sfiimomura et al., 1998). Unlike AD, LBD does not draw sufficient clinical
attentions (Walker et al., 2015). However, compared to patients with AD, LBD patients
suffer from a more severe prognosis, which includes accelerated cognitive declines and shorter
lifespans (Mueller et al., 2017). Due to overlapping biomarkers, genetics and symptoms with
other dementias, LBD is more difficult to identify, especially from AD (Walker et al., 2015;
Mueller et al., 2017; Nelson et al., 2010).

Besides AD and LBD, a more severe subtype of the disease involving both has also
been identified, referred as the Lewy body variant of Alzheimer’s disease (Mix AD + LBD)
(Förstl, 1999). In this concomitant case, symptoms of AD and LBD can manifest at the
same time, such as plaques and tangles, hallucinations, delusions and slow wave transients
in electroencephalogram (EEG) (Weiner et al., 1996; Förstl, 1999; van der Zande et al.,
2018). Available clinical diagnostic criteria for AD (McKhann, 2012) and LBD (McKeith
et al., 2005) perform poorly when applied to this mixed dementia. Also, treatments should
be used with special caution, since required dopaminergic treatments can lead to aggressive
hallucination and delusion, and antipsychotics will result in Parkinsonian symptoms (Weiner
et al., 1996). Thus, how to identify and treat this mixed subtype is still an open research
area.

Dementia subtypes diagnosis at early stages is significant since clinicians can take spe-
cific treatments based on the result. In this paper, we focus on classifying four dementia
subtypes: pure AD,ure LBD, Mix AD+LBD and other subtypes, at the first time patients
manisfest very mild or mild cognitive impairment. Their cognitive status are measured by
global CDR score (CDRGLOB), and we use CDRGLOB of 0.5 and 1.0 as our indicator
for very mild or mild cognitive impairment. We utilized demographics, medication, health
history, physical, neuropsychological tests, cerebrospinal fluid (CSF) biomarker and genetic
variables of patients at first indication of mild impairment as the input for our classification,
and rely on National Alzheimer’s Coordinating Center (NACC) longitudinal data for our
analysis. (Nelson et al., 2010) and (Gaugler et al., 2013) showed that misdiagnosed rate
is high for both AD and LBD, therefore we used neuropathologic results obtained post-
mortem via autopsy, instead of clinician judgements as ground truth diagnosis. We train
and validate two machine learning models: Multiclass Logistic Regression (LR) and Multi-
layer Perceptron (MLP).After selecting the best model, its performance was compared with
clinician’s diagnosis at the very mild or mild cognitive impairment state of the patient. We
also investigated clinician errors to identify where the model improves diagnosis quality the
most. Compared to prior works using unstructured biomarkers such as MRI or EEG, our
work use only structured data to differentiate dementia subtypes. To our knowledge, this is
the first work using machine learning and structured data to distinguish autopsy-confirmed
pure AD, pure LBD, Mix AD+LBD, and other subtypes, based on data of the first visit
when patients show mild symptoms of dementia.
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2. Related Works

Despite difficulties to distinguish AD and LBD, several tentative works have investigated
the probability to combine machine leanring with biomarkers including imaging data and
EEG to do the classification.

(Lebedev et al., 2013) uses multivariate sparse partial least squares classification of
MRI cortical thickness measurements to differentiate between AD and LBD. Although it
can achieve a fairly good accuracy of 77.78%, the performance declines significantly when
the model is tested on the cohort of a distinct protocol without protocol alignment (an
important image preprecessing step to harmonize MRIs between different cohorts so that
models trained on an unified dataset can be applied to other cohorts without significant
performance drop). (Wada et al., 2019) investigates the utility of convolutional neural net-
works (Lecun et al., 1998) and structural MR connectomes (generated from raw diffusion
tensor imaging, T1/T2 MRI, and BOLD imaging). Their method cannot outperform pre-
vious studies which used CT or EEG. 3D local binary pattern texture features, which are
extracted from T1 MRIs, combined with a random forest (RF) classifier is investigated by
(Oppedal et al., 2017). It shows separating AD and LBD is much harder than distinguish-
ing between normal control (NC) and either of them. (Katako et al., 2018) demonstrates
Positron Emission Tomography with fluorodeoxyglucose pattern is able to accurately clas-
sify AD and NC, but the specificity remains low when use it between dementia subtypes,
especially AD and LBD.

Besides imaging data, EEG is also explored. (Lee et al., 2015) shows grand total EEG
cut-off score of 6.5 can be used for clinically distinguishing between AD and LBD, with
sensitivity of 79% and specificity of 76%. Combining RF and quantitative EEG, (Dauwan
et al., 2016) argued that EEG can improve diagnosis accuracy for AD and LBD, and it is
the most discriminative feature selected by RF classifier compared to clinical tests, MRI,
CSF, and visual EEG. Furthermore, (Colloby et al., 2016) uses both EEG and MRI to
do the differential diagnosis, whose result is better than EEG-only and MRI-only methods.
(van der Zande et al., 2018) is the first work to investigate EEG to diagnose pure LBD, pure
AD and Mix AD + LBD, and is the most related work to our task. Although they confirmed
that EEG characteristics can separate pure LBD and pure AD, it cannot be applied for pure
LBD and Mix AD + LBD. Also, unlike our work, their model cannot distinguish pure AD,
pure LBD and Mix AD+LBD at the same time.

It is worth noticing that all above works lack neuropathological diagnosis, so the validity
of their findings is limited by accuracy of clinical diagnosis, which is low.

3. Methods

3.1 Data Description and Analysis

We work with data from participants of National Alzheimer’s Coordinating Center (NACC)
initiative, including 40,858 patients that have participated since 2005. The variables in our
study are limited to non-imaging data including demographics, health history, neuropsy-
chological tests, clinician judgements, CSF values (for Amloyde beta, P-tau, T-tau), APOE
genotypes and autopsy-based neuropathological findings. For a list of features used in this
paper, please see the supplementary material.
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As a measure for cognitive impairment we focus on Cognitive Dementia Rating Global
Score (CDRGLOB). CDRGLOB indicates five levels of impairment: 0.0 (no impairment),
0.5 (very mild), 1.0 (mild), 2.0 (moderate), 3.0 (severe).

Table 1 shows a summary of our population data.

Table 1: Cohort Characteristics Statistics

Characteristics Statistics

Gender
Male 17493
Female 23365

Ethnicity
White 32482
Black or African American 5106
American Indian or Alaska Native 252
Native Hawaiian or Pacific Islander 32
Asian 1009
Multiracial 1278
Unknown or ambiguous 699

Number of visits
Mean 3.49
Max 14
Min 1

Clinically diagnosed subtypes
Pure AD 17296
Pure LBD 1406
Mix AD+LBD 944
Other sutypes 21212

Neuropathologically defined subtypes
Pure AD 970
Pure LBD 53
Mix AD+LBD 751
Other subtype 775

Average age at initial visits 71.78
Average CDRGLOB at initial visits 0.55
Average educational years 15.07

3.2 Dementia Subtype Definitions and Qualified Patients

We used autopsy confirmed neuropathological results, which are the gold standard for iden-
tifying dementia subtypes, as the labels for training and validating our models. Specifi-
cally, for AD, we used NIA-AA Alzheimer’s disease neuropathologic change score (ADNC)
(”ABC” score) available as NPADNC, and Lewy body pathology available as NACCLEWY,
in the data. The specific definition is in Table 2.
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Table 2: Autopsy-confirmed definition for each dementia subtype

Dementia
Subtype

Pure AD Pure LBD Mix AD+LBD Other Types

NPADNC=2 or 3 NPADNC=0 or 1 NPADNC=2 or 3
Definition and and and others

NACCLEWY=0 NACCLEWY=3
NACCLEWY=1,2,

or 3

NPADNC: 0=Not AD, 1=Low ADNC, 2=Intermediate ADNC, 3=High ADNC
NACCLEWY: 0=No Lewy body pathology, 1=Brainstem-predominant, 2=Limbic (transitional) or
amygdala-predominant, 3=Neocortical(diffuse).

To compare the performance between our best model and clinicians, we also need clin-
icians’ diagnosis as reference. To capture that, we used Presumptive etiologic diagnosis of
Alzhiemer’s disease (available as NACCALZD) and Presumptive etiologic diagnosis of Lewy
body disease (available as NACCLBDE) Table 3 includes derived definitions of clinicians’
diagnosis.

Table 3: Definition of clinician labels

Dementia
Subtype

Pure AD Pure LBD Mix AD+LBD
Other
Types

NACCALZD=1 NACCALZD=0 or 8 NACCALZD=1
Definition and and and others

NACCLBDE=0 or 8 NACCLBDE=1 NACCLBDE=1

NACCALZD: 0=Cognitive impairment (dementia, MCI, or impaired, not MCI) and no AD. 1=Any
cognitive impairment and AD etiologic diagnosis. 8=Normal cognition.
NACCLBDE: 0=Cognitive impairment and no LBD. 1=Any cognitive impairment and LBD etio-
logic diagnosis. 8=Normal cognition.

Our inclusion criteria includes availability of at least one visit with documented mild
cognitive impairment (CDRGLOB = 0.5 or 1), availability of autopsy-based neuropathology
NPADNC and NACCLEWY. For each patient, the first early-stage visit (CDRGLOB = 0.5
or 1) is used as the classification point. The statistics for qualified patients is in Table 4.

Table 4: Statistics of all qualified patients

Dementia Subtype Pure AD Pure LBD
Mix

AD+LBD
Other Types Total

# of qualified
patients

757 46 572 512 1887

3.3 Training, Validation, and Heldout Test Set

After all qualified patients are selected, they are split randomly at the patient level into
training, validation and test set, which means one patient data can only exist in one set
to avoid data leakage between different sets. In order to keep the same distribution for
all three sets, patients of each dementia subtype were divided by the ratio of 6:2:2. Then
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shuffled patients for each subtype were combined to training, validation and test set with
the number of 1127, 380, 380, respectively.

3.4 Data Preprocessing

The input for each patient is the data captured at the first visit at which they get a CDR-
GLOB score of 0.5 or 1.0. This data originally includes 721 features. However, to further
avoid any information leakage, we adopt following criteria to remove features from the
original set: We exclude: (1) all features that include clinician notes and any feature con-
cluding text data.(2) all administrative information, such as visited ADC and Packet code
of investigation forms. (3) utilization of anti-Alzheimer or anti-Parkinson medicine at the
visit, whether patients have Parkinson’s Disease in the health history, clinician judgement
of symptoms, clinician diagnose, time information of diseases (since this will imply the pa-
tient has already had the disease), all features from NP dataset and death information. (4)
features which the summary score can be derived from. We only keep CDRSUM for CDR,
NACCGDS for GDS score, NACCMMSE for MMSE score, MOCATOTS for MOCA. After
removing all those features, there are 191 left. These features are listed in supplementary
material.

In clinical data, missing values are common. In NACC dataset, there are three kinds
of missing values: (1) denoted by NaN (2) unknown data (3) not applicable or available
data because of different ways to collect data. In preprocessing, all of them are treated
in the same way and used the same symbol to represent. In addition, there are two data
formats: continuous and categorical data. For continuous data, we assume that data of
different visits have more similarity and closer relationship within the same patient than
between different patients; thus, we fill the missing continuous data using the median of
records from the same patient, which is more robust than mean values. After this step,
there are still patients having continuous missing values, since feature values are missed
entirely for all visits of that patient. In this case, those data are filled using the median of
that feature among ALL patients. For the categorical features, we assume that they are
not missed randomly and they can provide extra information for the model, so we just keep
them as an additional category.

After filling the missing data, both categorical and continuous data are further processed
by feature engineering, so that they can be directly fed into machine learning models. For
continuous features in three sets, we normalize them using mean and standard deviation of
the training set by (feature value−training mean)/training std. For categorical features,
each category is encoded by a one-hot vector.

3.5 Model Description

We used Multiclass Logistic Regression (LR) and Multilayer perceptron (MLP) to predict
dementia subtypes.

In Multiclass LR model, the probability of each class is computed as,

ŷ = softmax(Wx+ b) (1)

where ŷ is the output vector (of dimension 4), W is model wight matrix, x is an input
feature vector (of dimension 557 here), b is bias, and softmax(zi) = ezi∑

k ezk .
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MLP is a fully connected feedforward neural networks, which has one input layer and
one hidden layer followed by an output layer. MLP models the output probabilities as
follows.

ŷ = softmax(W1σ(W2x+ b2) + b1) (2)

In our experiments, σ(z) is Leaky ReLu with negative slop of 0.1, the the hidden layer
diemension is searched within the values of [256, 512, 1024], and dropout with probability
of 0.5 is added on the hidden layer.

We use Cross Entropy Loss to train the model. Within the training set, the ratio of
patients of each disease is 453:26:342:306. We weight the loss function for each disease by
(# of total training samples) / (# of training samples of this disease). To avoid overfitting,
L1 regularization term is added to the loss function, with the coefficient α. We tuned α
within the values of [0, 0.001, 0.01, 0.1] using the validation set.

Specifically, our loss function is

Loss Function = − 1

N

∑
i∈[1,N ]

∑
j∈[1,4]

p(i)y
(i)
j logŷ

(i)
j + α

∑
k

|wk| (3)

where p(i) is the weight for i-th dementia subtype in the training set, y is the true label,
ŷ is the model output, w is the model parameter set.

3.6 Data Augmentation

In preprocessing, patients with no autopsy-confirmed labels at the first visit of early stages
were removed. However, all visits of such patients have corresponding clinician diagnosed
labels, so we tested four strategies to expand the training set using those excluded visit
data. The training data in these strategies are as follows: (1) all autopsy: all visits with
autopsy-confirmed labels instead of only the first visit of early stages (2) all first early
stages: first early stage visits of all patients in the original dataset no matter whether they
have autopsy-confirmed labels or not (3) all early stages: all visits of early stages from the
original dataset instead of only the first one (4) all stages: all visits of not only early stages,
but later stages (CDRGLOB=2 or 3) as well. In all strategies, for those visits who have
no neuropathological result, clinician diagnosed labels defined in section 3.2 are used as
target labels for the model. In addition, since our task is for cognitively impaired patients,
for those visits with only clinician labels, we eliminate all visits whose clinician diagnosis
are No Cognitive Impairment (NACCALZD=8 and NACCLBDE=8). For the number of
training dataset of each data augmentation strategy, please see Table 5.

Table 5: The number of training dataset for each data augmentation strategy

Augmentation
Strategy

None All autopsy
All first

early stages
All early

stages
All stages

Training set size 1,127 8,083 22,458 53,509 73,529
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4. Experiments and Results

4.1 Model Training and Evaluation

For the convenience and flexibility to train and compare our models, we use Pytorch
(Van Merriënboer et al., 2018) to implement both LR and MLP. Specifically, we train
our model for 300 epochs, using batch size of 16 and Adam optimizer (Kingma and Ba,
2015) with (ε=1e-8, β1=0.9, β2=0.98). The initial learning rate is 0.001, then decreases by
0.5 when the training loss does not drop.

For each data augmentation strategy, both LR and MLP are trained and validated.
To select the best model to compare with clinicians, (1) we tune hyperparameters of each
model based on the best Macro and Micro F1 score, (2) among all the tuned models, we
remove overfitting ones, and select one model with the best overall Macro F1 score and one
with the best overall Micro F1 score. (3) the overall best model which has lowest validation
loss is selected from these two models. The result is in Table 6.

Table 6: Valiation F1 scores of pure AD, pure LBD, Mix AD+LBD and other subtypes

Augmentation
Strategy

Model
Max Macro and Micro F1 scores

of Max Macro F1 model
Max Macro and Micro F1 scores

of Max Micro F1 model

None
LR (0.376797, 0.471053) overfitting

MLP overfitting overfitting

All autopsy
LR overfitting overfitting

MLP overfitting overfitting
All first
early stages

LR (0.368162, 0.431579) (0.350656, 0.442105)
MLP overfitting (0.357514, 0.452632)

All early
stages

LR (0.364346, 0.457895) (0.364346, 0.457895)
MLP (0.382694, 0.452632) overfitting

All stages
LR (0.362265, 0.463159) (0.362265, 0.463159)

MLP overfitting overfitting

Column 3 and 4 in Table 6 are maximum Macro F1 score and maximum Micro F1
score of the model we tuned based on the best Macro (column 3) and the best Micro
(column 4) F1 score, which is non-overfitting. Maximum Macro and Micro F1 scores can be
obtained at different epochs. Among all the tuned non-overfitting models, LR (L1 coefficient
α=0.01, No Augmentation, epoch=3) has the best overall Micro F1 score, and MLP (hidden
dimension=256, α=0.001, All early stages, epoch=3) has the best overall Macro F1 score.
The overall best model is LR, which has a lower validation loss (1.525938 vs. 1.536219).

4.2 Interpretability

In the computational healthcare, interpretability is important, we also examine which fea-
tures the overall best model focuses on when it makes decisions for each disease. From the
previous section, the best model we selected is LR, so we can rank the input feature impor-
tance for each disease based on weights in the linear layer. For each disease, top 10 features
are shown in Table 7. If a feature name is followed by a number, it means that feature is
categorical, and the number is the category the model attends on. The float number in the
parenthesis is the weight of this particular feature in best LR. Please refer to supplement
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materials, and UDS1, CSF2 and Genetic3 data of NACC data set to see the descriptions of
features and each category.

Table 7: Top 10 features with weights of the best model for each disease

Dementia
Subtype

Top Features

Pure AD

CSFTTAU(5.738-02), NACCAGE(5.726e-02), DEPDSEV-4(5.568e-02),
IRRSEV1(5.355e-02), INEDUC(4.733e-02), NITESEV-4(4.494e-02),

NACCNE4S1(4.396e-02), NACCFAM1(4.212e-02), INCONTF0(3.703e-02),
TRAUMEXT0(3.606e-02)

Pure LBD

DEPD1(4.913e-02), INCONTF2(4.712e-02), INCONTU1(4.049e-02),
INRELTO2(3.912e-02), BOSTON(3.182e-02), NACCGDS(3.121e-02),

INSEX2(3.004e-02), BILLS3(2.977e-02), DIGIBLEN(2.804e-02),
BIPOLAR-4(2.581e-02)

Mix AD +
LBD

NACCNE4S2(7.646e-02), NACCAPOE4(7.039e-02), NACCFAM1(6.808e-02),
INCONTU0(5.135e-02), NACCAPOE2(4.691e-02), UDSVERLC(4.327e-02),

ANXSEV1(4.000e-02), ANX1(3.948e-02), SEX2(3.059e-02),
MEMTIME(3.028e-02)

Other
subtypes

DISN1(8.437e-02), NACCAPOE3(6.790e-02), NACCBMI(6.484e-02),
NACCFAM0(5.500e-02), UDSBENTD(5.092e-02), WAIS(4.808e-02),

TRAVEL0(4.628e-02), NACCGDS(4.526e-02), CSFABMD-4(4.422e-02),
PAYATTN0(4.202e-02)

From those top features, some conclusions align with medical findings, which proves the
validity and credibility of our best model. Take pure AD for example, T-tau(CSFTTAU)
and ages(NACCAGE) are the most important factors examined by the best model. Also,
the model tend to consider patients with mild irration(IRRSEV1), APOE e4 alleles (NAC-
CNE4S1) and familial history of cognitive impairement (NACCFAM1) as pure AD.

4.3 Comparison with Clinicians

To see how well the best model performs for each subtype, we set clinician diagnosis on
the test set as the baseline. In Table 8, bootstrap (sample size = 80% of the whole test
set, 1000 iterations) is used to compute mean F1 score for each subtype, followed by 95%
confidence intervals in the parenthesis.

Table 8: F1 scores of the best model and clinicians

Dementia Subtype Best Model Clinicians
Pure AD 0.569 (0.506, 0.633) 0.556 (0.489, 0.624)

Pure LBD 0.000 (0.000, 0.000) 0.283 (0.100, 0.526)
Mix AD + LBD 0.283 (0.183, 0.381) 0.062 (0.000, 0.133)
Other subtypes 0.523 (0.422, 0.609) 0.584 (0.492, 0.667)

1. https://www.alz.washington.edu/WEB/rdd_uds.pdf
2. https://www.alz.washington.edu/WEB/csfded.pdf
3. https://www.alz.washington.edu/WEB/rdd_gen.pdf
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From Table 8, we can see that for all diseases except for pure LBD and Mix AD +
LBD, mean F1 scores of the best model and clinicians fall within each other’s 95% confi-
dence interval. Thus, their ability to distinguish these subtypes is significantly the same.
Additionally, clinicians outperforms the best model on pure LBD, while the best model
performs better on Mix AD+LBD. From confusion matrices in Figure 1, the best model
greatly increased the number of true positive patients with Mix AD + LBD, which indicates
that it outperforms clinicians by a large margin for this more severe subtype.

Figure 1: Confusion matrix of the best model and clinicians on the entire test set (0=Pure
AD, 1=Pure LBD, 2=Mix AD+LBD, 3=None of these).

Compared with F1 scores, sensitivity and specificity are more meaningful in the medical
field. Table 9 and Table 10 compare sensitivity and specificity of both the best model and
clinicians for each dementia subtype. As F1 scores in Table 8, bootstrap (sample size =
80% of the whole test set, 1000 iterations) is also used to compute 95% confidence intervals
shown in the parenthesis following the mean value.

Table 9: Sensitivity of the best model and clinicians

Dementia Subtype Best Model Clinicians
Pure AD 0.730 (0.650, 0.805) 0.680 (0.597, 0.761)

Pure LBD 0.000 (0.000, 0.000) 0.406 (0.000, 0.800)
Mix AD + LBD 0.215 (0.130, 0.300) 0.033 (0.000, 0.075)
Other subtypes 0.464 (0.360, 0.570) 0.671 (0.567, 0.764)

Table 10: Specificity of the best model and clinicians

Dementia Subtype Best Model Clinicians
Pure AD 0.442 (0.370, 0.511) 0.495 (0.426, 0.563)

Pure LBD 0.997 (0.990, 1.000) 0.965 (0.942, 0.983)
Mix AD + LBD 0.864 (0.820, 0.903) 0.970 (0.946, 0.990)
Other subtypes 0.885 (0.837, 0.926) 0.770 (0.714, 0.822)
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For pure AD, specificity is relatively lower compared to sensitivity. The reason is that
pure AD is the most common dementia, and overlaps greatly with other subtypes, so when
similar symptoms appear, both the model and clinicians tend to diagnose patients as pure
AD. For pure LBD, low sensitivity and high specificity demonstrates that they are always
misdiagnosed unless some extremely typical features appear. This is also confirmed by a
large confidence interval range, which implies that some pure LBD patients are easy to be
identified, while others are not. Therefore, more research should be done on finding more
explicit and differentiable features and criteria for this specific dementia. The same case is
also for Mix AD + LBD, and it is more severe due to the much lower clinician sensitivity
compared to pure LBD, which confirms that current criteria performs extremely poorly for
this subtype.

As F1 scores, sensitivity and specificity for pure AD of the best model and clinicians
fall within 95% confidence interval of each other, demonstrating that the best model and
clinicians have the same clinical performance for this subtype. For pure LBD, the best
model cannot identify it at all, and clinicians also has a fairly low sensitivity. For Mix
AD + LBD, the best model has higher sensitivity, where our model performs better. For
other subtypes, clinicians achieve higher sensitivity, probably because they can refer to
more explicit symptoms and criteria of each of those subtypes. However, for our model,
other dementias are grouped together, which is harder to diagnose. Additionally, moderate
clinician specificity (0.770) of other subtypes implies that symptoms between AD, LBD and
other dementias are also overlapping.

Table 11: Clinician wrong probabilities given each group for pure AD and Number of falsely
predicted labels for each subtype. The highlighted number is the highest wrong probability
within each group.

Features Groups Wrong probabilities # of falsely predictive labels
CSFTTAU 0 ∼ 500 0.600 (3/5) [0, 0, 0, 3]

500 ∼ 1000 0.000 (0/1) [0, 0, 0, 0]
NACCAGE 30 ∼ 40 0.000(0/1) [0, 0, 0, 0]

50 ∼ 60 0.267(4/15) [0, 0, 0, 4]
60 ∼ 70 0.292(7/24) [0, 0, 1, 6]
70 ∼ 80 0.345(19/55) [0, 1, 2, 16]
80 ∼ 90 0.354(17/48) [0, 2, 2, 13]
90 ∼ 100 0.222(2/9) [0, 0, 0, 2]

DEPDSEV 1 0.447 (17/38) [0, 0, 4, 13]
2 0.286 (4/14) [0, 0, 1, 3]
3 0.000 (0/2) [0, 0, 0, 0]

IRRSEV 1 0.433 (13/30) [0, 0, 3, 10]
2 0.357 (5/14) [0, 0, 0, 5]
3 0.400 (2/5) [0, 0, 1, 1]

INEDUC 0 ∼ 12 0.000 (0/1) [0, 0, 0, 0]
12 ∼ 16 0.171 (6/35) [0, 1, 1, 4]
16 ∼ 18 0.250 (12/48) [0, 1, 2, 9]
18 ∼ 20 0.484 (15/31) [0, 0, 1, 14]
20 ∼ 36 0.500 (5/10) [0, 0, 0, 5]
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Table 12: Clinician wrong probabilities given each group for pure LBD and Number of falsely
predicted labels for each subtype. The highlight number is the highest wrong probability
for each group.

Features Groups Wrong probabilities # of falsely predictive labels
DEPD 0 0.500 (3/6) [2, 0, 0, 1]

1 0.750 (3/4) [1, 0, 1, 1]
INCONTF 0 0.556 (5/9) [2, 0, 1, 2]

1 1.000 (1/1) [1, 0, 0, 0]
INCONTU 0 0.571(4/7) [2, 0, 0, 2]

1 0.500 (1/2) [1, 0, 0, 0]
2 1.000(1/1) [0, 0, 1, 0]

INRELTO 1 0.571 (4/7) [1, 0, 1, 2]
2 1.000 (1/1) [1, 0, 0, 0]
3 0.500 (1/2) [1, 0, 0, 0]

BOSTON 20 ∼ 25 1.000 (3/3) [3, 0, 0, 0]
25 ∼ 30 0.429 (3/7) [0, 0, 1, 2]

After comparing the performance of the best model and clinicians from macro perspec-
tive, we are further interested in (1) in what population clinicians make more errors (2)
where our best model improves. Since others subtypes is an aggregated category, reasons
cannot be explored explicitly for each subtype. Based on it, we only analyze pure AD, pure
LBD, and Mix AD+LBD in this part. Since our model outperforms clinicians on clinicians,
we analyze top 10 factors for it, while top 5 factors for pure AD and pure LBD. For each
subtype, we first divide the population truly with this subtype into several groups accord-
ing to a specific feature, then compute the probability of errors for each particular group
p(wrong|group). If the probability of a group is the highest, then clinicians will most likely
make errors for this specific group. Table 11 and Table 12 show the probabilities of clini-
cian errors for pure AD and pure LBD. Combining them with Table 13, we can see in what
population clinicians are easier to misdiagnose. For exploring the second question, we listed
error probabilities for both clinicians and the best model, and compare them to see why
the best model performs better. The number in parenthesis is the proportion of patients
belonged to this group are misdiagnosed, and each number in brackets is the number of
misdiagnosed patients who are falsely assigned to each subtype.

Table 13: Clinician and Best Model wrong probabilities given each group for Mix AD+LBD
and Number of falsely predicted labels for each subtype. The highlighted number is lower
wrong probability for each group.

Features Groups Clinicians Best Model

NACCNE4S 0 0.978 (44/45) [33, 3, 0, 8] 0.889 (40/45) [28, 1, 0, 11]
1 0.957 (44/46) [36, 1, 0, 7] 0.761 (35/46) [34, 0, 0, 1]
2 0.909 (10/11) [7, 0, 0,3] 0.545 (6/11) [6, 0, 0, 0]

NACCAPOE 1 0.974 (38/39) [30, 2, 0, 6] 0.872 (34/39) [24, 0, 0, 10]
2 0.956 (43/45) [35, 1, 0, 7] 0.756 (34/45) [33, 0, 0, 1]
3 1.000 (6/6) [3, 1, 0, 2] 1.000 (6/6) [4, 1, 0, 1]
4 0.909 (10/11) [7, 0, 0, 3] 0.545 (6/11) [6, 0, 0, 0]
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5 1.000 (1/1) [1, 0, 0, 0] 1.000 (1/1) [1, 0, 0, 0]

NACCFAM 0 0.972 (35/36) [25, 5, 0, 5] 0.833 (30/36) [22, 0, 0, 8]
1 0.957 (67/70) [51, 1, 0, 15] 0.757 (53/70) [48, 0, 0, 5]

INCONTU 0 0.979 (94/96) [71, 5, 0, 18] 0.760 (73/96) [63, 1, 0, 9]
1 0.882 (15/17) [11, 1, 0, 3] 0.882 (15/17) [12, 0, 0, 3]
2 1.000 (1/1) [1, 0, 0, 0] 1.000 (1/1) [1, 0, 0, 0]

UDSVERLC 0 ∼ 5 1.000 (1/1) [1, 0, 0, 0] 1.000 (1/1) [0, 1, 0, 0]
5 ∼ 10 1.000 (3/3) [3, 0, 0, 0] 0.000 (0/3) [0, 0, 0, 0]
10 ∼ 15 1.000 (1/1) [1, 0, 0, 0] 1.000 (1/1) [0, 0, 0, 1]

ANXSEV 1 1.000 (20/20) [19, 0, 0, 1] 0.650 (13/20) [10, 1, 0, 2]
2 0.933 (14/15) [11, 2, 0, 1] 0.600 (9/15) [5, 0, 0, 4]
3 1.000 (4/4) [3, 1, 0, 0] 0.750 (3/4) [3, 0, 0, 0]

ANX 0 0.958 (68/71) [48, 3, 0, 17] 0.859 (61/71) [54, 0, 0, 7]
1 0.974 (38/39) [33, 3, 0, 2] 0.641 (25/39) [18, 1, 0, 6]

SEX 1 0.938 (60/64) [44, 5, 0, 11] 0.797 (51/64) [42, 1, 0, 8]
2 1.000 (51/51) [40, 1, 0, 10] 0.765 (39/51) [34, 0, 0, 5]

MEMTIME 0 ∼ 10 1.000 (1/1) [1, 0, 0, 0] 1.000 (1/1) [1, 0, 0, 0]
10 ∼ 20 0.929 (39/42) [28, 3, 0, 8] 0.929 (39/42) [31, 0, 0, 8]
20 ∼ 30 0.974 (37/38) [30, 2, 0, 5] 0.737 (28/38) [25, 0, 0, 3]
30 ∼ 40 1.000 (13/13) [8, 1, 0, 4] 0.846 (11/13) [10, 0, 0, 1]

5. Discussion

5.1 Limitations

Although our best model can outperform clinicians, there are still some limitations of this
work. Firstly, in NACC dataset, there is no explicit clinician diagnostic label for pure
AD, pure LBD, Mix AD + LBD and other subtypes. Thus, we only defined clinician
diagnosis based on separate diagnosis for AD and LBD, which is more rough. However,
this will improve clinician performance compared to the case if real clinicians are requested
to diagnose for the refined subtypes discussed in the work. The reason is that once AD
symptoms appears, the clinician label is 1, so when clinician assign positive for AD, patients
could have pure AD or Mix AD+LBD. Therefore, our model can still beat clinicians at least
on the mixed type. Secondly, for our particular task, after selecting qualified patients, the
number of samples in the dataset become relatively small. Because of this and individual
variations for dementia symptoms, our best model may be overfitting to this specific dataset.
Therefore, to test its generalization, a larger dataset for this task needs to be collected and
evaluated on.

5.2 Future Works

To improve our model performance and also simplify the patient examination process, some
possible ideas will be explored in the future: (1) only keep those input features which can
be measured at home so that patients can predict dementia subtypes on their own. (2)
change the way to define labels for data augmentation: using the clinician diagnosis of
each patient’s last visit as the label for all previous visits of this patient. The reason is
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that later diagnosis is more accurate since symptoms will be more obvious for clinicians to
distinguish subtypes. (3) Based on aggregated test scores like CDRSUM, the model may
not be able to differentiate subtypes confidently. So expanding test scores which compose
those aggregated ones may help if that will not lead to overfitting. (4) change the way to
train the model using transfer learning: train the model on samples who only have clinician
labels, then fine-tune it using samples with neuropathological results.

6. Conclusion

In conclusion, in this work we examined Multiclass Logistic Regression and Multilayer
Perceptron to diagnose pure Alzheimes’s disease, pure Lewy body dementia, the Lewy body
variant of Alzheimer’s disease and other subtypes at the first time patients manifest very
mild or mild coginitive impairment. Multiclass Logitstic Regression is the best model on the
validation set. It outperforms clinicians on the more severe mixed subtype, while performs
worse on pure Lewy body dementia. We also investigate top features of each subtype for
clinical interpretability and also calculated misdiagnosed probability for each group. To our
best knowledge, this is the first work to use machine learning and only structured data to
predict such refined dementia subtypes at the first early stage visit.

References

Sean J. Colloby, Ruth A. Cromarty, Luis R. Peraza, Kristinn Johnsen, Gı́sli Jóhannesson,
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Supplementary Material

Table 14: Clinical features used in this paper from NACC dataset

NACC Form Feature Name Descriptions

A1 Subject
Demographics

NACCID Subject ID number

DATE
Visit Date, derived from

VISITMO, VISITDAY, VISITYR
SEX Subject’s sex

HISPANIC Hispanic/Latino ethnicity
HIPOR Hispanic origins

PRIMLANG Primary language
EDUC Years of education

NACCAGEB Subject’s age at initial visit
NACCNIHR Subject’s race
NACCAGE Subject’s age at visit

A2
Co-participant
Demographics

INSEX Co-participant’s sex Original
NACCNINR Co-participant’s race

INEDUC Co-participant’s years of education
INRELTO Co-participant’s relationship to subject

A3 Subject
Family History

NACCFAM
Indicator of first-degree

family member with cognitive impairment

A4 Subject
Medications

ANYMEDS Subject taking any medications

NACCAAAS
Reported current use of
an antiadrenergic agent

NACCAANX
Reported current use of

an anxiolytic, sedative, or hypnotic agent

NACCAC
Reported current use of

an anticoagulant or antiplatelet agent

NACCACEI
Reported current use of

an angiotensin converting enzyme (ACE) inhibitor

NACCADEP
Reported current use of

an antidepressant

NACCAHTN
Reported current use of any

type of an antihypertensive or
blood pressure medication

NACCAMD
Total number of medications

reported at each visit

NACCANGI
Reported current use of

an angiotensin II inhibitor

NACCAPSY
Reported current use of
an antipsychotic agent

NACCBETA
Reported current use of

a betaadrenergic blocking agent (Beta-Blocker)
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A4 Subject
Medications

NACCCCBS
Reported current use of

a calcium channel blocking agent

NACCDBMD
Reported current use of
a diabetes medication

NACCDIUR Reported current use of a diuretic

NACCEMD
Reported current use of

estrogen hormone therapy

NACCEPMD
Reported current use of

estrogen + progestin hormone therapy

NACCHTNC
Reported current use of

an antihypertensive combination therapy

NACCLIPL
Reported current use of

lipid lowering medication

NACCNSD
Reported current use of

nonsteroidal anti-inflammatory medication
NACCVASD Reported current use of a vasodilator

A5 Subject
Health History

TOBAC30 Smoked cigarettes in last 30 days O
TOBAC100 Smoked more than 100 cigarettes in life
SMOKYRS Total years smoked cigarettes
PACKSPER Average number of packs smoked per day

QUITSMOK
If the subject quit smoking,

age at which he/she last smoked (i.e., quit)

ALCOCCAS
In the past three months,

has the subject consumed any alcohol?

ALCFREQ

During the past three months,
how often did the subject have at least

one drink of any alcoholic beverage
such as wine, beer, malt liquor, or spirits?

CVHATT Heart attack/cardiac arrest
HATTMULT More than one heart attack/cardiac arrest?

CVAFIB Atrial fibrillation
CVANGIO Angioplasty/endarterectomy/stent

CVBYPASS Cardiac bypass procedure
CVPACDEF Pacemaker and/or defibrillator

CVPACE Pacemaker
CVCHF Congestive heart failure

CVANGINA Angina
CVHVALVE Heart valve replacement or repair

CVOTHR Other cardiovascular disease
CBSTROKE Stroke

STROKMUL
More than one stroke reported

as of the Initial Visit
CBTIA Transient ischemic attack (TIA)
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TIAMULT
More than one TIA reported

as of the Initial Visit
SEIZURES Seizures
NACCTBI History of traumatic brain injury (TBI)

TBI Traumatic brain injury (TBI)

TBIBRIEF
Traumatic brain injury (TBI)
with brief loss of consciousness

TRAUMBRF Brain trauma — brief unconsciousness

TBIEXTEN
TBI with extended loss of

consciousness — 5 minutes of longer
TRAUMEXT Brain trauma — extended unconsciousness

TBIWOLOS
TBI without loss of consciousness

— as might result from military detonations or
sports injury

TRAUMCHR Brain trauma — chronic deficit
NCOTHR Other neurological condition

DIABETES Diabetes

DIABTYPE
If Recent/active or Remote/

inactive diabetes, which type?
HYPERTEN Hypertension
HYPERCHO Hypercholesterolemia

B12DEF Vitamin B12 deficiency
THYROID Thyroid disease
ARTHRIT Arthritis

ARTHTYPE Type of arthritis
ARTHUPEX Arthritis, region affected — upper extremity
ARTHLOEX Arthritis, region affected — lower extremity
ARTHSPIN Arthritis, region affected — spine
ARTHUNK Region affected — unknown
INCONTU Incontinence — urinary
INCONTF Incontinence — bowel

APNEA Sleep apnea history reported at Initial Visit

RBD
REM sleep behavior disorder (RBD)

history reported at Initial Visit

INSOMN
Hyposomnia/insomnia

history reported at Initial Visit

OTHSLEEP
Other sleep disorder history

reported at Initial Visit

ALCOHOL

Alcohol abuse — clinically significant occurring
over a 12-month period

manifested in one of the following areas:
work, driving, legal, or social
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ABUSOTHR

Other abused substances
— clinically significant impairment

occurring over a 12-month period manifested
in one of the following areas:
work, driving, legal, or social

PTSD Post-traumatic stress disorder (PTSD) O
BIPOLAR Bipolar disorder

SCHIZ Schizophrenia
DEP2YRS Active depression in the last two years
DEPOTHR Depression episodes more than two years ago
ANXIETY Anxiety

OCD Obsessive-compulsive disorder (OCD)

NPSYDEV

Developmental neuropsychiatric disorders
(e.g., autism spectrum disorder [ASD],

attention-deficit hyperactivity
disorder [ADHD], dyslexia)

PSYCDIS Other psychiatric disorder

B1 Physical
NACCBMI NACCBMI

BPSYS Subject blood pressure (sitting), systolic
BPDIAS Subject blood pressure (sitting), diastolic

B4 CDR score CDRSUM CDR sum of boxes

B5 Neuropsy-
chiatric
Inventory
Questionnaire
(NPI-Q)

NPIQINF NPI-Q co-participant
DEL Delusions in the last month

DELSEV Delusions severity
HALL Hallucinations in the last month

HALLSEV Hallucinations severity
AGIT Agitation or aggression in the last monthv

AGITSEV Agitation or aggression severity
DEPD Depression or dysphoria in the last month

DEPDSEV Depression or dysphoria severity
ANX Anxiety in the last month

ANXSEV Anxiety severity
ELAT Elation or euphoria in the last month

ELATSEV Elation or euphoria severity
APA Apathy or indifference in the last month

APASEV Apathy or indifference severity
DISN Disinhibition in the last month

DISNSEV Disinhibition severity
IRR Irritability or lability in the last month

IRRSEV Irritability or lability severity
MOT Motor disturbance in the last month

MOTSEV Motor disturbance severity
NITE Nighttime behaviors in the last month

NITESEV Nighttime behaviors severity
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APP Appetite and eating problems in the last month
APPSEV Appetite and eating severity

B6 Geriatric Depression
Scale (GDS)

NACCGDS Total GDS Score

B7 Functional
Activities
Questionnaire
(FAQ)

BILLS

In the past four weeks,
did the subject have any

difficulty or need help with:
Writing checks, paying bills,

or balancing a checkbook

TAXES

In the past four weeks,
did the subject have any

difficulty or need help with:
Assembling tax records,

business affairs, or other paper

SHOPPING

In the past four weeks,
did the subject have any

difficulty or need help with:
Shopping alone for clothes,

household necessities, or groceries

GAMES

In the past four weeks,
did the subject have any

difficulty or need help with:
Playing a game of skill

such as bridge or chess, working on a hobby

STOVE

In the past four weeks,
did the subject have any difficulty

or need help with:
Heating water, making a cup of coffee,

turning off the stove

MEALPREP

In the past four weeks,
did the subject have any difficulty

or need help with:
Preparing a balanced meal

EVENTS

In the past four weeks,
did the subject have any difficulty

or need help with:
Keeping track of current events

PAYATTN

In the past four weeks,
did the subject have any difficulty

or need help with:
Paying attention to and understanding a

TV program, book, or magazine
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REMDATES

In the past four weeks,
did the subject have any difficulty

or need help with:
Remembering appointments, family

occasions, holidays, medications

TRAVEL

In the past four weeks,
did the subject have any difficulty

or need help with:
Traveling out of the neighborhood,
driving, or arranging to take public

transportation

MMSE Score NACCMMSE Total MMSE score (using D-L-R-O-W)

C1 Neuropsy-
chological
Battery
Summary
Scores

LOGIMEM
Total number of story units

recalled from this current test administration

MEMUNITS
Logical Memory IIA

— Delayed — Total number of story units recalled

MEMTIME
Logical Memory IIA

— Delayed — Time elapsed
since Logical Memory IA — Immediate

UDSBENTC Total score for copy of Benson figure

UDSBENTD
Total score for 10- to 15-minute
delayed drawing of Benson figure

UDSBENRS
Recognized original stimulus

from among four options
DIGIF Digit span forward trials correct

DIGIFLEN Digit span forward length
DIGIB Digit span backward trials correct

DIGIBLEN Digit span backward length

ANIMALS
Animals — Total number of animals

named in 60 seconds

VEG
Vegetable — Total number of vegetables

named in 60 seconds

TRAILA
Trail Making Test Part A

— Total number of seconds to complete
TRAILARR Part A — Number of commission errors
TRAILALI Part A — Number of correct lines

TRAILB
Trail Making Test Part B

— Total number of seconds to complete
TRAILBRR Part B — Number of commission errors
TRAILBLI Part B — Number of correct lines

WAIS WAIS-R Digit Symbol
BOSTON Boston Naming Test (30) — Total score

UDSVERFC
Number of correct F-words

generated in 1 minute
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UDSVERFN
Number of F-words

repeated in 1 minute

UDSVERNF
Number of non-F-words

and rule violation errors in 1 minute

UDSVERLC
Number of correct L-words

generated in 1 minute
UDSVERLR Number of L-words repeated in 1 minute

UDSVERLN
Number of non-L-words

and rule violation errors in 1 minute
UDSVERTN Total number of correct F-words and L-words

UDSVERTE
Total number of F-word

and L-word repetition errors

UDSVERTI
Total number of non-F/L-words

and rule violation errors

MoCA score MOCATOTS MoCA Total Raw Score — uncorrected

C2 Neuropsy-
chological
Batery Scores

CRAFTVRS
Craft Story 21 Recall (Immediate)

— Total story units recalled, verbatim
scoring

CRAFTURS
Craft Story 21 Recall (Immediate)

— Total story units recalled, paraphrase
scoring

DIGFORCT
Number Span Test: Forward
— Number of correct trials

DIGFORSL
Number Span Test: Forward

— Longest span forward

DIGBACCT
Number Span Test: Backward

— Number of correct trials

DIGBACLS
Number Span Test: Backward

— Longest span backward

CRAFTDVR
Craft Story 21 Recall (Delayed)

— Total story units recalled, verbatim scoring

CRAFTDRE
Craft Story 21 Recall (Delayed)

— Total story units recalled, paraphrase scoring

CRAFTDTI
Craft Story 21 Recall (Delayed)

— Delay time

CRAFTCUE
Craft Story 21 Recall (Delayed)

— Cue (boy) needed

MINTTOTS
Multilingual Naming Test (MINT)

— Total score

MINTTOTW
Multilingual Naming Test (MINT)

— Total correct without semantic cue

MINTSCNG
Multilingual Naming Test (MINT)
— Semantic cues: Number given

23



Wei and Razavian

MINTSCNC
Multilingual Naming Test (MINT)

— Semantic cues: Number correct with cue

MINTPCNG
Multilingual Naming Test (MINT)
— Phonemic cues: Number given

MINTPCNC
Multilingual Naming Test (MINT)

— Phonemic cues: Number correct with cue

Genetic Data
(RDD-Gen)

NACCNE4S Number of APOE e4 alleles
NACCAPOE APOE genotype

CSF
Biomarker
Data

CSFABETA Aβ1−42 reported value/concentration (pg/mL)
CSFPTAU P − tau181P reported value/concentration (pg/mL)
CSFTTAU T-tau reported value/concentration (pg/mL )
CSFABMD Aβ1−42 assay method
CSFPTMD P − tau181P assay method
CSFTTMD T-tau assay method
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