
Learning to Generate Chairs with Convolutional Neural Networks

Benjamin Ahlbrand
New York University

ba1404@nyu.edu

Hui Wei
New York University

hw1666@nyu.edu

Abstract

This work presents a differentiable renderer using convo-
lutional neural networks in order to render 3D CAD models
that are available online. Given some sparse sampling of
discrete azimuth and elevation angle views of each object,
it renders a 2D representation. This network is also capa-
ble of finding correspondences between objects of the same
type in order to have a meaningful interpolation between
them, in other words, semantically stable.

1. Introduction

We implemented the paper Learning to Generate Chairs
by Dosovitskiy et. al.[4] in PyTorch. The only implemen-
tation available was the author’s in Caffe with Lua, so we
set off to create a clean open source implementation of the
work. The work is an abstract differentiable renderer (and to
our knowledge one of the earliest useful examples) where a
network is provided with an object class, and camera intrin-
sics, it does a one shot through the network - rendering a 3D
model. The novelty of this paper is that instead of perform-
ing the rasterization and the rest of the traditional pipeline,
you show it a sufficient number of examples, and the net-
work can imagine the views in between. Some weaknesses
seem to be in 1) the resolution of our (and the author’s) im-
plementation, and 2) in capturing details not shown in the
training dataset provided. Of course the latter is a reason-
able shortcoming, as otherwise the network wouldn’t have
a concept of what would be underneath the arm of the chair.

2. Related Work

Differentiable rendering is a rapidly growing area of in-
terest, at the intersection of graphics and machine learn-
ing (and work deriving from recent progress in computer
vision). DeepMind published a popular paper recently in
Science, called Generative Query Networks [5] as well as
things like RenderNet[6] demonstrate the incredible poten-
tial of differentiable rendering in general. Instead of an
explicit scene representation, where you need to specify

Figure 1. class 1, φ : 0◦, θ : 37◦

and rasterize and perform elaborate computations of nat-
ural (or unnatural in the case of non-photorealistic render-
ing - which is quite unexplored to the best of our knowl-
edge) phenomena - these allow a neural network to learn an
abstract sense of the scenes and potentially offload other-
wise impossible real-time renderings to less powerful hard-
ware. There is also potential for using these techniques in
order to synthesize datasets for other more complex neu-
ral networks to be trained. One use case of this is to com-
pute a loss when training. In a recent paper on SVBRDF
reconstruction[3], their network creates four texture maps
(diffuse albedo, specular albedo, roughness, normal), but
they were unable to compute loss across all four texture
maps successfully. The target normals and the inferred nor-
mals were close enough for the loss curve to progress, but
there was still a perceptible different to the human eye when
actually rendered to lit surfaces. They then were able to
compute this loss in the lit rendered space and then back-
prop through their original network successfully. So this
complex juxtaposition of many parameters fed back to an-
other network turns out to have immense potential. Genera-
tive Query Networks seem to learn to be able to predict view
independence at a much deeper level than our implementa-
tion, inferring arbitrary views from an abstract description -
somewhat similar to this work.

1



Figure 2. class 678, φ : 50◦, θ : 256◦

Figure 3. class 800, φ : 20◦, θ : 200◦

3. Implementation Detail

3.1. Preprocessing the Dataset

Since masks for the rendered chair images were not
given by the original dataset, we generated them by assign-
ing 0 to the white background pixels and 1 to chairs. At the
same time, due to the input structure for our network and
messed-up file name for each class, we first constructed a
filename2idx dictionary, like word2idx in word embedding,
to store the corresponding relationships between each
class and its index varied from 1 to 809. In addition, we
converted two kinds of viewpoint angles, azimuth angles
θ, and elevation angles θ, to view vectors of length 4:
[sin(θ/180π), cos(θ/180π), sin(φ/180π), cos(φ/180π)].
Since in the training set, transformed images are not
provided, for transform parameter vector, we only feed in a
ones vector for each training sample.

3.2. Model

PyTorch was used for constructing the entire model be-
cause of its more modern interface (as the field has pro-
gressed rapidly in the past few years), intuitive ways and
good performance. According to 5, 2D convolutional lay-
ers and transposed convolutional layers were used. Specifi-
cally, we could not get the correct result using the log Soft-
max and negative log likelihood loss provided in PyTorch
for segmentation part, we switched to sigmoid and binary
cross entropy loss, which is equivalent.

Figure 4. running mean of loss curve

3.3. Training

For the results shown, we trained our network for 1000
epochs taking 5 days, and saw little improvement beyond a
point early on - we demonstrate epoch 417 in our ablation
experiment. The loss function is compromised of a com-
bination of mean-squared error for the target image, and
a second loss function for the segmentation mask, scaled
by a factor λ, which measures the relative importance be-
tween them. The running mean of the learning curve over
the trained epochs can be observed from figure 4.

For training details, Adam with momentum β1 = 0.9
and β2 = 0.999 and the regularization parameter ε = 10−6

were utilized for optimization. We used mini-batch size of
128 and set the initial learning rate to be 0.0005, with the
help of reduce learning rate on plateau scheduler with factor
0.5 and patience 2 to adjust the learning rate automatically
according to the validation error. Also, as suggested in the
original paper, we initialized the weight for convolutional
and linear layers with kaiming normal distribution with fan
out mode and ReLU non-linearity.

4. Network Architecture
Refer to Figure 5 for a visualization of the network’s ar-

chitecture from the original paper. For all the convolution
layers, kernel size of 3 and padding of 1 were used. Trans-
posed conv layers (also known as de-convolutional layers)
of kernel size 4 and stride 2 were for upsampling the fea-
ture map size to recover it to the image size in the dataset.
Both of theses are shown in the dots part in 5. Moreover,
ReLU were added after each layer to add the non-linearity.
The network accepts as input, a set of classes represent-
ing the object’s type, a view vector representing the axes
angles, and a set of translation parameters. Pass each of
these given parameters to individual fully connected layers
of size 512, and concatenate the output together, to feed to
more fully connected layers of size 1024. Please note that
for the colored image output, the output channel for that
branch is 3, while one channel is for masks since they are
grayscale. This network is a rather lightweight architecture



density wise from our experience, the up-convolution pro-
cess is quite fascinating since we’ve studied classification
process much more deeply, seems obvious in retrospect, but
flipping the architecture upside down in order to achieve a
generative approach is rather powerful.

5. Evaluation
5.1. Ablation Study

We chose to evaluate our model based on three differ-
ent metrics of the loss function for the segmentation mask,
with mean-squared error loss, cross-entropy loss per pixel,
and without use of the segmentation masks entirely. We
found the segmentation mask is mostly unnecessary in gen-
eral - but does start to introduce small artifacts without it,
so it appears to be necessary for the finishing touches of the
rendering. For the image visualizations over various view-
points (see figures 1, 2, 3), it’s a bit difficult to separate ar-
tifacts that result from the compression, versus the blitting /
scaling from matplotlib, the additional scaling from Latex,
and the network itself. We can rest assured that each image
is created the same way so, we observe the same ’shadows
on the wall’, and can make some judgement calls on what
impact the different decisions had on the results. All theta
and phi angles in the displayed results do not appear in our
training set (i.e. most of these examples are angles between
the extrema), thus this demonstrates the interpolation the
network performs between views - so you can see some ar-
tifacts around the legs due to missing some of these finer de-
tails. One general observation is that our model can create
new view angles instead of just remembering the training
data provided.

5.2. Comparison

We discuss a comparison of the different experiments for
the ablation study. One might notice, that not using a seg-
mentation mask on this particular example seems to thin out
and bend the front right chair leg somewhat.

Some general observations we noted were:

• NLLLoss for mask: high-quality masks, coarser im-
ages

• MSELoss for mask: coarser masks, smoother images

• no mask: smoother images, but subtle issues with the
finer details along the edges of model

5.3. Discussion

In figure 6, we attempted to normalize based on the
min and max values the network was outputting. Once we
clamped the values to 0 and 1, the issue was resolved as
we rescaled the color values to the typical 0 to 255 as 8
bit color channels typically expect. The resolution of 128

by 128 pixels is quite limited, but the interesting work was
getting this up and running, as opposed to scaling to high
quality 4096 pixel resolutions, which would be interesting
to see how this scales once you add physically based render-
ings. We discussed using a nonlinear layer at the top, like
tanh, in order to smooth things out, but that would lose color
accuracy, and we were able to fix it with our visualization
method to begin with. Viewing angles beyond those seen
in the dataset appear to work reasonably well, but you can
observe some feature loss at the corners, where the viewing
angles didn’t project light / thus aren’t seen by the network
at any point.

5.4. Dataset

We divided the original dataset of chair renderings gath-
ered from the paper Seeing 3D Chairs[1], into training and
validation, whose ratio is 3:1. In the original dataset, they
provided 1393 rendered classes of chairs, each class in-
cludes 2 elevation angles (20◦ and 30◦) and 31 azimuth an-
gles (from 0◦to 348◦with the step of 11◦), thus 62 view-
points in total. According to the Learning to Generate
Chairs[4], we randomly selected 809 out of 1393 categories
as the training and validation sets. The examples are in fig-
ure 10.

6. Future Work

6.1. Extensions

Since we wrote a 3D renderer in Python, to run from the
command line in order to iterate over a set of 3D models in
a folder, and render from various angles and transformation
parameters, it would be a trivial extension to add transfor-
mations, colors and zooming. To add lighting parameters,
you’d just need to concatenate that into the network at the
beginning layer and expand each layer accordingly. Fur-
thermore, we didn’t add interpolation between different ob-
ject classes of the same type - such as blending between
different chairs to generate entirely new objects.

6.2. Directions

Another interesting direction for this work, is exploring
more complex scenes, where the render time for a scene is
higher than that of the inference cost for this network. For
instance, could this learn complex interactions between re-
flections / refractions and indirect lighting bounces? Given
the complexity of optical physics, it would be an interesting
exploration to see if instead of computing several individual
parameters of the rendering equation, if it’s possible to learn
a more abstract representation for different physically based
lighting models, and that aren’t real-time approximations.



Figure 5. upside-down CNN architecture

Figure 6. Raw Normalization

6.3. Network Improvements

It would be interesting to explore this space with a gen-
erative adversarial network, or to see if any work has been
done on this. A convolutional encoder with a classifier
trained on the objects being generated could sharpen the
features. Perhaps something along the lines of [2] would
catch the sharper features across different resolutions due to
the use of laplacian pyramids to pull features more consis-
tently across viewing angles. Another avenue to explore is

Figure 7. ablation: mean-squared loss, λ = 100. [left: image,
right: mask]

optimal structure for when expanding the network’s mem-
ory across layers for additional parameters, is it strictly nec-
essary to continue to add neurons or is there a better inherent
structure that could be added which would be more effective
in learning this mapping?

References
[1] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic.

Seeing 3d chairs: exemplar part-based 2d-3d alignment using
a large dataset of cad models. 2014. 3

[2] P. Bojanowski, A. Joulin, D. Lopez-Pas, and A. Szlam. Op-

Figure 8. ablation: cross-entropy loss, λ = 0.01 [left: image,
right: mask]

Figure 9. ablation: no mask



timizing the latent space of generative networks. In J. Dy
and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 600–609, Stock-
holmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR. 4

[3] V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and
A. Bousseau. Single-image svbrdf capture with a rendering-
aware deep network. ACM Trans. Graph., 37(4):128:1–
128:15, July 2018. 1

[4] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to
generate chairs with convolutional neural networks. CoRR,
abs/1411.5928, 2014. 1, 3

[5] S. M. A. Eslami, D. Jimenez Rezende, F. Besse, F. Vi-
ola, A. S. Morcos, M. Garnelo, A. Ruderman, A. A. Rusu,
I. Danihelka, K. Gregor, D. P. Reichert, L. Buesing, T. We-
ber, O. Vinyals, D. Rosenbaum, N. Rabinowitz, H. King,
C. Hillier, M. Botvinick, D. Wierstra, K. Kavukcuoglu, and
D. Hassabis. Neural scene representation and rendering. Sci-
ence, 360(6394):1204–1210, 2018. 1

[6] T. Nguyen-Phuoc, C. Li, S. Balaban, and Y. Yang. Render-
net: A deep convolutional network for differentiable rendering
from 3d shapes. CoRR, abs/1806.06575, 2018. 1

Figure 10. dataset examples. [left: image, right: mask]


