
Notes on Neural Ordinary Differential Equations

Hui Wei

February 2020

1 Ordinary Differential Equations

1.1 Definition

Mathematically, Ordinary Differential Equations (ODE) initial value problem is
represented as follows:

dz(t)

dt
= f(z(t), t)

z(t0) = z0

(1)

The problem is to find function z(t). We set the derivative to be dependent on
both z(t) and t for flexibility. Note that f(z(t), t) and z0 are known. The ODE
describes the derivative or gradient at each point (t, z(t)), and the initial value
z(t) = z0 specifies the constant in the final solution.

1.2 ODE for Classification and Regression Problems

We can use initial value problem to solve classification and regression problems. In
those problems, we want to find the relationship between the input space X and the
output space Y . We can define formally these problems based on ODE as follows:

dz(t)

dt
= f(z(t), t, θ)

z(t0) = z0

z(t1) = z1

(2)

f is the derivative or gradient over t ∼ z(t) plane. For flexibility, we use f2 to
encode input feature x as z0 = f2(x). Since the solution of ODE z1 at t1 has the
same dimension as the encoded input z0 which is probably different from that of the
groundtruth y, so f3 is used to decode z1 and get the output ŷ = f3(z1). Different
from (1), gradient f here is unknown and parameterized by θ. We can use some
predefined function as f and some loss function L, such as cross entropy loss for
classification and mean square root loss for regression, to get the optimal parameter
θ and get the best approximation of the relationship between X and Y with training
samples {(x1,y1), . . . , (xN ,yN)}.

In the paper, authors stated that they considered t0 and t1 also as parameters
and trained them as well. However, suggested by Xintian Han that training those
two parameters does not work, so just treat them as the predefined parameters. No
matter what t0 and t1 are set, the derivative learnt by machine learning models are
equivalent.

1

https://arxiv.org/abs/1806.07366
https://cn.linkedin.com/in/xintian-han-0814a2131/%7Bcountry%3Dus%2C+language%3Den%7D?trk=people-guest_people_search-card


1.3 Intuitive Understanding

We can think of the gradient as the flow direction (please see Fig.1) in the t ∼
z(t) plane, which is like in the river. Our boat will go directly along the gradient
direction. We want to take the boat from the start point (t0, z(t0)) to the end point
(t1, z(t1)), and we can change the flow direction at any point in the river to achieve
this goal. Given several start and end points, how do we change the flow so that all
actual destinations are closest to corresponding desired destinations.

Figure 1: Visualization of gradients defined over t ∼ z plane 1

.

1.4 Advantages of ODE for classification and regression

It turns out that using ODE for solving these problems can save the number of
parameters and the storing memory. We use the example in this blog here to explain
it: in linear regression, the simplest predefined function is y = ax+ b and there are
two parameters a and b and need to store gradients for both of them. If we define
the same linear function using its gradient dy

dx
= a, the number of parameters is just

a. In ODE, there is no need to compute the constant b since the solver will give the
integral solution numerically instead of analytically.

2 Numerical Solvers for ODE

2.1 Euler’s Method

The analytical solution for problem (1) is:

z(t1) = z(t0) +

∫ t1

t0

dz(t)

dt
dt

= z(t0) +

∫ t1

t0

f(z(t), t, θ)dt

(3)

1The plot is from http://www.cs.toronto.edu/~duvenaud/talks/ode-talk.pdf

2

https://jontysinai.github.io/jekyll/update/2019/01/18/understanding-neural-odes.html
http://www.cs.toronto.edu/~duvenaud/talks/ode-talk.pdf


θ is optional since it is independent on t and is just the parameter to depict the
gradient function.

Since most of ODE problem (1) cannot be solved analytically, several numerical
methods was invented and Euler’s method is the simplest one. It is derived from
the definition of the derivative:

f(z(t), t, θ) =
dz(t)

dt
= lim

∆t→0

∆z(t)

∆t
= lim

∆t→0

z(t+ ∆t)− z(t)

∆t
(4)

From (4), we can get

z(t+ ∆t) = z(t) + ∆tf(z(t), t, θ) (5)

This is Euler’s Method: from t0, it uses a fixed step ∆t to get the next evaluation
variable t0+∆t. Meanwhile, it moves from the initial value z(t0) along the derivative
f(z(t0), t0, θ) to add ∆tf(z(t0), t0, θ) on it. Then replace t0 with t0 + ∆t and iterate
above steps until the final evaluation variable t1.

2.2 ResNet

The residual block in ResNet [He+16] is:

h(t+ 1) = h(t) + f(h(t), t, θ) (6)

Equation (6) has the same format with (5) when ∆t = 1. Each layer of the block
defines the gradient f(h(t), t, θ) at that depth (or time, which is consistent with the
paper) t and can be trained through backpropagation. Therefore, residual block is
actually Euler’s Methods for ODE problem. Note that residual block represents the
gradient and is a ODE solver at the same time.

For solving problem (3), Euler’s Method or residual block has two shortcom-
ings: 1) it uses the fixed update step, which is inflexible and always leads to larger
approximation error, 2) bottleneck block can only control the gradient function at
each discrete depth t. Since there are so many more advanced ODE solvers which
can take adaptive evaluate steps according to the problem difficulty, we need to
assume the depth (or time) as continuous instead of discrete like ResNet, so that
the gradient can be controlled everywhere on t ∼ z plane.

2.3 Neural ODE

The core question to solve is Equation (2) for both regression and classification
problems. Since neural networks are the universe function approximator, it can be
used to define the gradient function f(z(t), t, θ) everywhere on t ∼ z plane. Also, we
won’t use residual block (Euler’s Method) to solve the ODE problem numerically,
instead, more advanced solvers are used.

The visualized difference between Neural ODE [Che+18] and ResNet can be seen
in Fig.2 and Fig.1 in the original paper.

2.3.1 Forward Pass

Before any forward pass, what we have right now is (1) a neural network which
represents gradient f(t, z(t), θ) over t ∼ z(t) plane, (2) Training samples D =
{(x1,y1), . . . , (xN ,yN)}. Therefore, we have the following initial problem:

3

https://arxiv.org/pdf/1806.07366.pdf


Figure 2: Gradient over t ∼ z defined by residual block (Left) and Neural ODE
(Right). The former one is discrete and the latter one is continuous 2.

dz(t)

dt
= f(z(t), t, θ)

z(t0) = x
(7)

We can call ODESolver(f, z(t0), t0, t1) to get the output ŷ = z(t1) along the
evaluation trajectory by some solver. For each training sample, we use the same
solver to solve problem (7) and we can compute the corresponding loss function
based on the ground-truth y and output ŷ. f2 and f3 is ignored here for simplicity.

2.3.2 Backward Pass

Since we use neural networks to define the gradient function f(z(t), t, θ), we need
to use the gradient w.r.t.θ and the loss function L to update its parameters using
backpropagation. However, backpropagation directly from ODESolver leads to high
memory and high error, so the paper computes the gradient via adjoint sensitivity
method.

From the paper, the gradient is

dL

dθ
= −

∫ t1

t0

aT (t)
∂f(z(t), t, θ)

∂θ
dt (8)

This is an ODE initial value problem:

(dL
dθ

)

dt
= −aT (t)

∂f(z(t), t, θ)

∂θ
,
dL

dθ

∣∣∣
t1

= 0|θ| (9)

In Eq.(8), a(t) = ∂L
∂z(t)

. From (8), we can see to compute dL
dθ

, it also needs to know

a(t), z(t) at both t0 and t1. Note that like backpropagation, the flow to compute
the gradient is reversed against the forward pass, so the integral is from t1 to t0 and
the initial value is at t1. Also, from (8), we can see the initial value is zeros since

2The plot is from http://www.cs.toronto.edu/~duvenaud/talks/ode-talk.pdf

4

http://www.cs.toronto.edu/~duvenaud/talks/ode-talk.pdf


there is no item before the integral, unlike (3). Please see more details in Appendix.
B of the paper.

It is easy to know z(t1) from the forward pass and a(t1) directly from the loss
function. To get z(t0) and a(t0), two ODE problems needs to be solved:

da(t)

dt
= −aT (t)

∂f(z(t), t, θ)

∂z
, a(t1) =

∂L

∂z(t1)
(10)

dz(t)

dt
= f(z(t), t, θ), z(t1) = z1 (11)

To solve ODE problems (9)(10)(11), we can just call ODESolver once using

augmented dynamics [f(z, t, θ),−aT ∂f(z,t,θ)
∂z

,−aT ∂f(z,t,θ)
∂θ

]. Then it can compute those
values at the same intermediate evaluation times ti. Once we get dL

dθ
, optimizer

such like SGD and Adam can be used to update neural network parameters which
represent the gradient (flow direction) over t ∼ z plane.

References

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”.
In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2016.

[Che+18] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In:
Advances in Neural Information Processing Systems (2018).

5


	Ordinary Differential Equations
	Definition
	ODE for Classification and Regression Problems
	Intuitive Understanding
	Advantages of ODE for classification and regression

	Numerical Solvers for ODE
	Euler's Method
	ResNet
	Neural ODE
	Forward Pass
	Backward Pass



