
Sequence Models
1. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation

● Why: proposed RNN encoder-decoder structure and GRU for neural machine

translation.
● Task: Machine Translation
● Encoder: same as the usual RNN, without any output. The hidden state of the

last step as the sentence representation c.
● Decoder: can have different length from encoder. Note that different from the

usual RNN, (1) its output y_{t} depends on not only the hidden state of time t, but
also previous output y_{t-1} and the sentence representation c. (2) its hidden
states rely on not only the hidden states of last step, but also the sentence
representation c and the output of the last step.

2. Sequence to Sequence Learning with Neural Networks
● Proposed a different way to train the sequence-to-sequence model which is the

model we use today.
● Task: Machine Translation
● Differences from the Cho el.at: (1) use LSTM instead of GRU. (2) add the layers

of LSTM, which from 1 to 4. (3) The most important trick: reverse the source
sentence and keep the target sentence to train the network. It seems that by
reversing the source sentence, the encoder-decoder model adds more short-term
dependence between source and target, which makes the decoding process
easier.

● How to deal with the exploding gradient: use the gradient clips.
● How to deal with different length sentence: in same mini-batch, try to contain

sentences of same length.

3. Neural Machine Translation by Jointly Learning to Align and Translate

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.0473

● Why: since it turns out that when the encoder encodes the whole source

sentence into a fix-sized vector, it is difficult for the model to translate long
sentences. So this paper proposed Attention, by which the decoder can focus
on different part of the hidden states of source sentence dynamically.

● Task: Machine Translation
● Different from the previous paper, this paper uses bidirectional LSTM for the

encoder. The intuition of it is that when translating some word, we hope the
decoder not only keep focus on the preceding context, but also the following
context. After getting the hidden layers from forward and backward LSTM, they
concatenate them row by row to build a overall hidden state at a time step.

● For Decoder part, when it generates some word, it (1) computes the energy
function e according the decoder hidden state of last time step and each encoder
hidden state. (2) uses softmax to normalize the energy function for each encoder
hidden state. (3) get the attention score which is the convex combination of
encoder hidden states.

4. Effective Approaches to Attention-based Neural Machine Translation

● Task: Machine translation
● Why: proposed a global attention, which is much like the attention before, and a

local attention, which is more flexible and computationally cheaper than the
global attention.

https://arxiv.org/abs/1508.04025

● Same for both global and local attention: after get the context vector c and the
hidden state of the decoder, then concatenate them, and compute a new hidden
state which determines the softmax score.

● Global Attention: similar to the attention proposed in paper 3, it proposes more
methods to compute the score. Unlike paper 3, which uses concatenation of
bidirectional LSTM as the source hidden states, this paper only uses the hidden
states of the top layer of stacked LSTM as the source hidden states.

● Local Attention: first generate the position for different time step, which is the
center of the focus area. Then the decoder only attends on this area. Note the
width of the area is chose beforehand and thus, is fixed. How to determine the
position: 1) local-m: the position is the same as the position in the decoder. 2)
local-p: the position is determined by the current non-linear transformation of the
position in the decoder.

● Input-feeding Approach: since in global and local attention, unlike attention in
paper 3, each attention determination is independent, without taking the context
into account. So in order to compensate for that, the paper concatenate the
constructed hidden states, which encodes the decoder hidden states and context
vector, and the input for the next step.

5. Coupled Multi-Layer Attentions for Co-Extraction of Aspect and Opinion Terms

● Task: aspect and opinion terms co-extraction
● Why: previous methods 1) depends on the dependent parsers, which cannot

extract syntactic and dependency structures, especially for long sentences. 2)
depends on handmade feature engineering, which needs specific knowledge and
also very laborious.

● Single-layer attention model: explore the direct relationships between different
words. 1) use word2vec and GRU to attain the token representations. 2)
generate the query vector to represent the high-level information for aspect and
opinion terms. 3) use the tensor operator to get the relationship between word
representation and the query vector as showed at the bottom of (a). 4) use GRU
on result of 3) to contain the context information for each representation. 5)

http://www.aaai.org/Conferences/AAAI/2017/PreliminaryPapers/15-Wang-W-14441.pdf

multiply each context-dependent representation with weight vector to get the final
classification score.

● Multi-layer coupled attention: put the relationships between aspect and opinion
terms into account, and explore indirect relationships between different words in
the sentence. 1) word2vec and GRU. 2) generate query aspect and opinion
vector at the same time. 3) use different tensor operator for a and p, then
concatenate them together to propagate them together. Note for different
classification outputs (here, we have 2, one for a, one for p), they only share
word2vec and hidden states attained by GRU working on the word2vec, and
query vectors. 4) in different layers, the relationship between them is as (c) , in
which u_{t-1} includes the information of the entire sentence, and o_{t-1} only
includes information of attended words of last layer.

6. Hierarchical Attention Networks for Document Classification

● Task: document classification
● Why: the hierarchical attention network sufficiently explore the hierarchical

structure of the document, which are words and sentences.
● Word-level encoder: encoder uses bi-GRU and concatenate them together used

as the word annotation.
● Word-level attention: first feed the word annotation into a MLP to generate word

representations. Then compute the inner product of them with a word-level query
vector, and use softmax to get the attention score for each word. Then the
sentence vector is the linear combination of these attentional word
representations.

● Sentence-level encoder and attention model: like these in Word-level encoder
and attention. Finally, the hierarchical model generates the vector for the final
classification problem.

https://www.cs.cmu.edu/~hovy/papers/16HLT-hierarchical-attention-networks.pdf

7. Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character

Models

● Task: Machine Translation
● Why: previously method only translates those words which are highly frequent.

For those uncommon words, they represent them as unk word. After obtaining
the target sentence, unk words are replaced by the corresponding words in the
look-up dictionary directly. Those methods ignore the relationships between
words, and different characters between different languages. Also, translation
only on the character-level does not take the word relations into account.

● Backbone: for the word-level encoder decoder, this paper uses the structure in
paper 4 with the global attention and bilinear form score function. <unk> for
unknown words in source and target, one for each language..

● Source Character-based representation: the paper uses character-level LSTM to
get the <unk> representation for source sentences. Note that to solve the
problem that different sentences have different unknown word positions in the
same mini-batch, the paper initializes all hidden layers using zeros so that the
representation of each <unk> is independent and unique for same word, so that
we can precompute the representation of those unknown words before actual
training. Note the same unknown word’s representation is the same.

● Target character-level generation: instead of using the same-path method, which
uses directly the hidden state input for the softmax layer, the paper uses a
separate-path method, which mimic the states in the same-path to generate
another hidden states which has the same form. According to the paper, this way
alleviate the pressure of the hidden state, which encodes the relationship
between context vector and hidden state for each word in the source sentence,
predicting <unk> word and the exact character-level decoding at the same time.

https://arxiv.org/abs/1604.00788
https://arxiv.org/abs/1604.00788

Note since here the decoding is context-dependent, so the representation for
each word token of same word is not necessarily the same. This separate-path
hidden state only initializes the hidden layer of the first layer, while other layers
are initialized by zeros.

● Highlight trick: for character-level decoder, the paper decouples it with the
word-level decoder. If the paper used the last hidden state of the character-level
decoder as the <unk> representation and fed into the next word-level decoder,
then since different sentences have different positions of unknown word, so the
character-level decoder cannot be trained in mini-batch. In practice, the paper
feed the <unk> word embedding in word level into the next time step, same as
there was no character-level decoder. Here, <unk> word embedding is in
simple-path and fed into next time step. At the same time, we can get the hidden
states in the separate-path. After the mini-batch, we feed all those hidden states
into the character-level decoder to decode them in the batch mode.

8. Long Short-Term Memory-Networks for Machine Reading

● Task: Machine Reading, compressing a sentence.
● Why: in terms of the shortcomings of RNN(1. RNN works in a way of Markov

chain manner, on the assumption that each cell can summarize prior context very
well, but in practice, it is hard to store all information in a single dense vector, 2.
Cannot handle the inherent structure of sentences since it reads the text token by
token), the paper utilizes memory and attention mechanism to overcome them.

● To solve the aforementioned problems of LSTM, the paper modifies the
traditional LSTM: instead of only storing and attending hidden states of earlier
time, it also stores and attends the memory.

● Difference between LSTMN attention and previous traditional attentions: here,
since LSTMN is used for extract information from and compress the whole
sentence, it only attends on the previous hidden states of the sentence it is
currently processing instead of the source hidden states which has been
processed. Therefore, it is self-attention.

● Difference between LSTMN and LSTM: 1. Besides maintaining the attention part
of hidden states when compress the input sentence, LSTMN also stores and

https://arxiv.org/abs/1601.06733

attends the previous memory. 2. Memory has the same attention score with
Hidden states, but the score only depends on previous hidden states. 3. The
gates function does not rely on the hidden states of the last time step, intead, it
depends on the weighted hidden states. 3. New memory depends on the
weighted prior memory and the newly-constructed memory at this time step,
which depends on the input and the weighted hidden states. 4. In traditional
LSTM, the hidden states will be fed into the next time step to decide the gates
and memory. In LSTMN, it only determines the attention score. Gates functions
relies on the weighted hidden state. In summary, the memory and hidden state in
the last time step have been substituted with the attentionally weighted memory
and hidden state.

● How to use this as a seq-to-seq model for the machine translation: maintain the
hidden states and memories for source and target sentences. The LSTMN
seq-to-seq model fuses the inter- and intra-memory. In the decoder, the memory
needs to take weighted memory in the source into account.

9. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

● Task: image captioning
● Why: the paper proposed two attention model: “hard” attention, which is trained

by REINFORCE, and “soft” attention, which is trained by backpropagation.
● Broad view: Broadly speaking, the network draws on the idea of seq2seq,

encoding the whole image as a sequence of vectors, each of which stands for a
position. CNN and LSTM are used as encoder and decoder, respectively. How to
compute the attention score is similar to paper 3. Difference between hard and
soft attention lies in the ways to computing the context vector.

● How to get the sequence of vectors in image: use VGG as the feature extractor
to get the feature maps from the fourth conv layer. Each spatial pixel in the
feature map is a vector, which is of length of the number of channels.

● Hard Attention: modeled as the one-hot variable of each position as a multinoulli
distribution which is parameterized by the output of softmax in paper 3, then use
the Monte Carlo sampling to approximate this distribution. Note hard attention
only focuses on one position.

● Soft Attention: as before, the context vector is the convex combination of all the
image vectors. Also, the paper uses backpropagation to train it.

https://arxiv.org/abs/1502.03044

10. A structured self-attentive sentence embedding

● Task: Author profiling, sentiment analysis and textual entailment. Actually, this

model is to encode a whole sentence.
● Why: Using a traditional LSTM to encode a sentence is not optimal, since: 1) it

needs to carry on every information in the whole sentence, so it is hard to encode
a very long text sequence. 2) the previous attention model primitive summation of
hidden states is suboptimal, and cannot attend on different semantic parts.
Therefore, this paper proposed 1) a self-attention model with multiple vectors
representing a sentence, and 2) a penalization term for rendering attention model
focus on different semantic parts.

● Self-attention model: the paper uses bi-LSTM model to make independent word
related, then use (b) to get the attention vector if r=1. If r=2, the model can get
more than one attentional scores, each of which keeps focus on different
semantic meaning of the text. Please Note that as parameters in score function,
all dimensions should not be related to the sentence length. Then use the fully
connected layer to get the representation of the whole sequence from the
representation matrix M.

● Penalization term: To make different attention vector m keep focus on different
part, the paper adds an another regularization term besides the loss function for
the downstream task. This Frobenius norm regularization enforces the dot
product of different attention score to approximate to zero.

● Two ways to visualize the attention: since we have more than one attention score
vector for each sentence, so there are two ways to visualize the result: 1) draw
heat map for each score vector. 2) sum up along column in order to get a
attention vector, then normalize the score.

https://arxiv.org/abs/1703.03130

