
K-means: A Semidefinite Programming’s

Perspective

Hui Wei
hw1666

May 14, 2018

Abstract

K-means is one of the most important unsupervised leaning algo-
rithms, which assigns N points into k clusters on the basis of minimal
sum-of-squared distances. However, this problem is NP-hard. In this
report, I show a SDP relaxation method for K-means and conclude that
this relaxation is tight under the stochastic ball model. Then examine this
method also works under a more generalized model, subgaussian mixture
model. Finally, I introduce several algorithms for solving this relaxation
under two models and quickly giving a certifier for the results, according
to [2] and [3].

1 Introduction

Optimization problems always come from data science and machine learning.
In machine learning, what we usually do is to transfer a model to a object
function and apply optimization algorithms to solve them. Unfortunately, for
those problems, they are usually NP-hard, which is a worst case statement for
computer scientists.

K-means is one of the well-known clustering algorithms, which requests par-
titions of {xi}Ni=1 to minimize the dissimilarity objective function. A popular
option for the objective function of K-means is as follows:

minimize

k∑
t=1

∑
i∈At

∥∥∥∥xi − 1

|At|
∑
j∈At

xj

∥∥∥∥2

2

subject to A1 ∪A2 . . . ∪Ak = {1, . . . , N}

(1)

In (1), we define

ct =
1

|At|
∑
j∈At

xj (2)

as the centroid for every cluster At.
There is a very popular heuristic algorithm called Lloyd’s algorithm, also

called k-means algorithm, for solving this problem. It changes centroid of every
cluster with the change of each cluster. It is described as follows [1].

1

Lloyd’s Algorithm
(1) For the domain which contains all the data points, randomly generate k
cluster centroids.
(2) For each data points, compute the distance between it and every centroid.
(3) Assign every data points to the closest centroid.
(4) Recompute the centroid according equation (2) using the current cluster
memberships.
(5) If the objective function satisfies the criterion, then the algorithm stops;
otherwise, repeat above steps.

Despite its simplicity and popularity, according to [1] and [2], there are two
shortcomings about Lloyd’s algorithm: 1.like other non-convex optimization
problems, this algorithm is very sensitive to the initial options for the starting
points of k centroids, therefore, it is easy to converge to a local minimum rather
than the global minimum point as we expected. 2.from what mentioned above,
the origin Lloyd’s algorithm does not show that how close the result approaches
the global optimal. In addition, the original problem (1) is NP-hard. It can
be shown that the exact solution of it will take O(nkd+1). Therefore, Lloyd’s
problem can only be used in a relatively small dataset.

Due to the drawbacks of this popular algorithm, many scientists are working
on how to relax the constraint of the original problem in order to give an algo-
rithm which can produce the result which is close to the global minimum. In
particular, Peng and Wei [1] used 0-1 SDP to relax this problem and invented
an algorithm called spectral clustering based on the SDP relaxation. Iguchi [2]
proved that Peng and Wei’s SDP relaxation is actually tight for K-means prob-
lem under the special model called stochastic ball model. In the same paper
[2], they also introduced a fast algorithm to test the optimality of the k-means
solution giving a certifier in quasilinear time. Furthermore, Mixon and Villar
[3] introduced a relax-and-round algorithm which is able to be applied to a
more general model known as subgaussian mixture model. In addition, they
also explained that the new algorithm is the denoising process for the method
of Lloyd’s algorithm or the spectral clustering in [1].

My work. I studied all the theoretical knowledge in the referenced papers
and summarized their methods. In addition, I implemented algorithms in the
papers and did some experiments to test the results mentioned by the authors.
I added a lot of my understandings about how to get the SDP relaxed k-means
problem in this report, which is not obvious in the original papers.

Organization of this report. In Section 2, I summarized the theoretical
background for algorithms appeared in the papers. Moreover, I will emphasize
what interests me, including how to get the SDP relaxation from the original
problem, and how to explain the well-rounded result for subgaussian mixture
models. I skipped all complex proofs in papers about lemmas and theorems for
simplicity. In Section 3, I will show my experiment results about algorithms
mentioned in the papers.

2

2 Theory

2.1 SDP and Dual Program of K-means

In this section, I will introduce how to transfer the original K-means problem,
which is NP-hard, to a solvable one using SDP relaxation. At the same time,
for the completeness, this report will give the Dual Program of the SDP without
proof. In the series of reference papers, the symbols used in Peng and Wei [1]
are different from those used in other papers [2,3,4]. Since in the later sections,
it is more convenient to utilize the latter ones, I will show how to change the
symbols in [1] to get the equivalent form in other papers.

In [1], Peng and Wei introduced a programming model named 0-1 semidefi-
nite programming. Then they derived the SDP form of K-means, and claimed
it is a 0-1 semidefinite programming model. As in [1], I will introduce 0-1
semidefinite programming, and then show how to relax K-means by this model.

2.1.1 0-1 semidefinite programming model

In the class, we learnt about the general form of SDP problem, that is

minimization Tr(WZ)

subject to Tr(BiZ) = bi for i = 1, . . . , m.

Z � 0.

(3)

where elements in the matrix Z can be any real number which makes Z
positive semidefinite.

In 0-1 semidefinite programming, the original Z � 0 is substituted with two
constraints, Z2 = Z and Z = ZT , which guarantee the elements in Z to be 0 or
1.

minimization Tr(WZ)

subject to Tr(BiZ) = bi for i = 1, . . . , m.

Z2 = Z,Z = ZT .

(4)

2.1.2 0-1 SDP relaxation for K-means problem

In this subsection, I will show how to transfer the K-means problem to 0-1 SDP
model, and then change the symbols in [1] into those in [2,3,4].

Consider the following problem: given a dataset S = {si = (si1, . . . , sid)
T ∈

Rd, i = 1, . . . , n}, which is in the Euclidean space, partition the whole dataset
into k disjoint clusters S = {S1, . . . , Sk}, whose centroid set is C = {c1, . . . , ck}.
Our goal is to minimize the following objective function which measures the
total distance between all the data points and the centroids.

f(S, S) =

k∑
j=1

|Sj |∑
i=1

∥∥∥s(j)
i − cj

∥∥∥2

2
. (5)

It is easy to prove that if we fix one of the clusters Sj , the distance objective
function for that cluster is minimized by

3

cj =
1

|Sj |

|Sj |∑
i=1

sji (6)

From the previous definition, it is the centroid for the cluster Sj .
According to [1], there is another way to describe the centroid. Let X =

[xij] ∈ Rn×k be the matrix, where its elements are defined as follows:

xij =

{
1 if si ∈ Sj
0 otherwise

(7)

Therefore, we can see that in the matrix X, a row stands for which cluster
a point belongs to, while a column stands for which points are assigned to this
cluster. According to the properties of K-means, we can get two constraints for
the matrix X. For every row, there is only one 1, and others are all 0’s. This is
because for every point, we can only assign it to the closest centroid. For every
column, there is at least one 1, since if all the elements in that column are 0’s,
this centroid does not need to exist anymore. Because we expect the algorithm
to cluster all the points into k clusters, all columns have to have at least one 1.
In addition, note that every column is orthogonal to each other, since for every
point, we can assign it to only one cluster.

Using the xij , we can define the centroid of the cluster by

cj =

∑n
l=1 xljsl∑n
l=1 xlj

(8)

As a result, we can use this form to represent (5) by

minimization

k∑
j=1

n∑
i=1

xij

∥∥∥∥s(j)
i −

∑n
l=1 xljsl∑n
l=1 xlj

∥∥∥∥2

2

.

subject to

k∑
j=1

xij = 1 for i = 1, . . . , n,

n∑
i=1

xij ≥ 1 for j = 1, . . . , k,

xij ∈ {0, 1} for i = 1, . . . ,n; j=1, . . . , k.

(9)

Until now, we have known the necessary theoretical background of 0-1 SDP
and K-means problem. Next, we can transfer the new problem (9) to a 0-1 SDP
model. Although Peng and Wei [1] gave a very detailed process, for me this is
very interesting and essential for the following contexts. Therefore, I still want
to give the complete derivation.

We can get the following objective function by rearranging (9),

f(S, S) =

n∑
i=1

∥∥si‖2(k∑
j=1

xij

)
−

k∑
j=1

‖
∑n
i=1 xijsi‖2∑n
i=1 xij

= Tr(WSW
T
S)−

k∑
j=1

‖
∑n
i=1 xijsi‖2∑n
i=1 xij

(10)

4

where WS ∈ Rn×d is the matrix in which sTi is its i-th row. Moreover,

note that for every row
∑k
j=1 xij is 1. From the previous definition, X is the

assignment matrix and its elements are 0 or 1, so we can have

XTX = diag

(n∑
i=1

x2
i1, . . . ,

n∑
i=1

x2
ik

)
= diag

(n∑
i=1

xi1, . . . ,

n∑
i=1

xik

)
(11)

Let
Z = X(XTX)−1XT (12)

Using this definition, we can rewrite (10) as Tr(WSW
T
S (I−Z)). We can see

easily from the definition of Z (12) that Z = Z2 and Z = ZT .In addition, for
some integer m, em is the all-one vector in Rm as we learnt in the class. Then,
since the sum of every row of X is 1, we can get the constraint

Xek = en (13)

As an immediate consequence,

Zen = ZXek = Xek = en (14)

Due to some linear algebra, we can find that
(∑n

i=1 x
2
ij∑n

i=1 xij

)
is on the diagonal

of Z. Therefore,

Tr(Z) =

k∑
j=1

(∑n
i=1 x

2
ij∑n

i=1 xij

)

=

k∑
j=1

1

= k.

(15)

Here, note that although we compute the trace of Z, itself is not a diagonal
matrix!

Hence, we can have the following 0-1 SDP model for the original problem of
K-means

minimization Tr(WSW
T
S (I − Z))

subject to Zen = en, T r(Z) = k

Z ≥ 0, Z2 = Z,Z = ZT .

(16)

In other reference papers, there is another equivalent model as mentioned be-
fore. However, due to the different symbols, sometimes it is hard to understand
the connection between those two models at the first glance. So the following
part of this subsection will show the other form and the connection between
them.

According to [2], we have the same objective function as (1) for K-means
problem. Then we can have the following semidefinite relaxation

minimization Tr(DX)

subject to Tr(X) = k,X1 = 1, X ≥ 0, X � 0
(17)

5

where D is the N ×N matrix defined by Dij = ‖xi − xj‖22 and matrix X is
defined by

X =

k∑
t=1

1

|At|
1At1

T
At (18)

whereX here is Z in paper [1]. Also,1At is the column ofX in Peng and Wei’s
paper, which denotes the indicator function about which data points belong
to the cluster At. Therefore, the objective function (1) can be expressed as
1
2Tr(DX) (note D is a symmetric matrix).

2.1.3 Notes about (17) and (18)

There are some details about X which are not obvious in [2]. When I inves-
tigated this problem, they were obstacles for me to understand the SDP, so I
write them down here as the supplement notes for the original paper.

1.there is an interesting property of X: it has a similar form of X in [1], but
there is a little difference in the definition: when point i and point j belong to
the same cluster, xij = 1

|At| instead of 1.

2.there is an essential key point about getting the objective function 1
2Tr(DX):

the sum of the distances between points in the cluster and the centroid is equal
to the sum of the mutual distance between any points in that cluster. This is
because the centroid ct = 1

|At|
∑
j∈At xj is chosen as the average of the cluster

points.
3.to get the correct answer, we need to shuffle the elements in columns of

X in [1] to get together those points which belong to the same cluster. For
example, there are four points in the datasets, and their assignment matrix is

A =

1 0
0 1
1 0
1 0
0 1

Then we need to shuffle the columns to get 1A1 = (1, 1, 1, 0, 0)T and 1A2 =
(0, 0, 1, 1, 1)T . The corresponding X is

X =

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

where we can see that the corresponding blocks which containing all Xij for the
same cluster Aj ∈ {A1, A2, . . . , Ak} are on the diagonal according to the order
of clusters. In addition, we need to shuffle the corresponding elements in D as
well.

2.1.4 Reasons to relax by SDP

Why we use SDP to relax the original problem stated in (9), or why we need to
relax it? From (9), we can see there are two difficulties for us to solve it directly.

6

First, because xij ∈ {0, 1}, we can only get the discrete constraint, which is much
like Max Cut Problem in the textbook [5]. Second, the objective function is not
convex, therefore, we cannot use the current tools provided such as CVX to solve
it. Using SDP to relax this problem can overcome those two main obstacles,
which we can easily see from (16) or (17). Moreover, from Theorem 2.1 of [1],
we know that solving 0-1 problem (16) or (17), is equivalent to finding a global
solution of the integer programming problem (9). Also, according to Iguchi [1],
most non-convex optimization methods cannot produce a certificate of global
optimality as we expect. However, if a non-convex problem has a corresponding
convex relaxation, then by solving the dual problem of this relaxation, we can
produce a certificate of a (approximate) optimality. So in the next section, I
will show the idea provided in [2] to give the certificate of the global optimality
for the K-means problem.

2.1.5 SDP dual problem for K-means

As I stated in the last section and the beginning of section 2.1, I will show the
SDP dual problem for K-means problem (17) without proof. The detailed proof
is in the paper [4]. For the completeness, I show the dual problem here, though
it is used for the next section about getting the certificate. As mentioned before,
we have k clusters in Rm, each contains n points. Hence, the total number of
data points is N = k × n. In a unconventional notation, we index a data point
with (a, i), where a stands for the cluster it belongs to, and i is the index of
the point in that cluster. With this kind of notations, the distance between two

points is d(a,i),(b,j). So the N×N matrix D consists of blocks D
(a,b)
ij = d2

(a,i),(b,j).

Hence, we can describe our SDP dual problem for (17) as follows:

minimization
z∈R,α

kz +

k∑
a=1

n∑
i=1

αa,i

subject to Q = zIN×N +

k∑
a=1

n∑
i=1

αa,iAa,i

k∑
a,b=1

n∑
i,j=1

β
(a,b)
i,j E(a,i),(b,j) +D

βi,j ≥ 0

Q � 0

(19)

where Aa,i = 1
2 (1eTa,i + ea,i1

T), E(a,j),(b,j) = 1
2 (eb,je

T
a,i + ea,ie

T
b,j), 1 ∈ RN×1

and ea,i ∈ RN×1 is the indicator function for index (a, i).

2.2 Certifiers for K-means clustering

As mentioned above, Lloyd’s algorithm will usually not converge to the global
optimum, and it will not give any information about how close the result is to
the global optimal. Based on the those two disadvantages, Iguchi [2] introduced
a fast probably certifiably correct algorithm to overcome these. In this section,
I will introduce some essential theoretical background for the certifier from the
paper [2] and the textbook [5]. Then introduce an important model, stochastic

7

ball model, and show that the 0-1 SDP relaxation (17) from [1] is tight under
this model. Finally, this report will give two algorithms introduced in [2], one
for testing K-means optimality and the other for solving K-means problem with
two clusters.

2.2.1 Preliminaries

In this subsection, I will introduce some essential backgrounds for dual certifi-
cate, which are not covered in the paper [2].

Definition 1 for a set C, the dual cone is such a set that satisfies

C∗ = {x : 〈x, y〉 ≥ 0 ∀y ∈ C}

With the definition of dual cone, we can represent the primal program

min
x

〈c, x〉

s.t. Ax− b ∈ L
x ∈ K

and the dual program can be described as follows

max
y

〈b, y〉

s.t. c−AT y ∈ K∗

y ∈ L∗

There is a little difference between this form and that we learnt from the
class. That is, now we use the dual cone to represent the primal and the dual
program, which is more generalized.

Definition 2 if x is feasible for primal program and y is feasible for dual pro-
gram, then we say a optimization problem satisfies strong duality if

〈c, xopt〉 = 〈b, yopt〉

we can use the definition of strong duality to find the certificate of optimality
for a convex optimization problem, which is exactly the method Iguchi [2] used
for finding the certificate for K-means problem using SDP relaxation.

In general, the certificate of optimality is the task that given xopt, to
quickly find yopt. The common method is as follows:

1. Check xopt is primal feasible
2. Find y such that (xopt, y) ∈ S = {(x, y) : 〈x, c〉 = 〈b, y〉}
3. Check y is dual feasible. If it is, then we can say that xopt is optimal for

the K-means clusters.

2.2.2 Stochastic ball model and tightness of SDP relaxation

It is shown that the 0-1 SDP relaxation is actually tight under a specific model,
stochastic ball model, with a high probability [2]. In this subsection, I will give
the definition of stochastic ball model, and give a theorem from [2] to show that
the SDP relaxation is tight with some probability. Because the proof is very
complicated, and it is not important for this report, if readers are interested in
this, please take a look at Section 2 of [2].

8

Definition 3 ((D,γ,n)-stochastic ball model) Let {γa}ka=1 be ball centers
in Rm. For each a, draw i.i.d. vectors {ra,i}ni=1 from some rotation-invariant
distribution D supported on the unit ball. The points from cluster a are then
taken to be xa,i = ra,i + γa. We denote 4 = mina6=b‖γa − γb‖2.

Note here γ is the center of the unit ball and r is the distance between the
data point and the center for a cluster.

From the next theorem, we can see that SDP relaxation (17) is typically
tight for the K-means problem.

Theorem 4 The k-means semidefinite relaxation (17) recovers the planted clus-
ters in the (D,γ,n)-stochastic ball model with probability 1− e−OmegaD,r(n) pro-
vided 4 > 2 + k2/m.

where m is the dimension of the Euclidean space where the balls are located
and the planted clusters in R2 are defined as follows:

Definition 5 (planted cluster) Take two unit disks in R2 with centers on
the x-axis at distance 4. Let x0 denote the smallest possible x-coordinate in
the disk on the right. Given θ, clusters the points according to whether the x-
coordinate is smaller than x0 + θ. When θ = 0, this clustering gives planted
clusters.

2.2.3 A fast test algorithm for K-means optimality

As we have already known, Lloyd’s algorithm does not give the certificate of
optimality for K-means. However, if a non-convex problem (9), has a convex
relaxation (17), then we can solve the dual program of it (19) to get the cer-
tificate for optimality. In [2], the authors relied on the technique introduced by
Bandeira to devise a fast algorithm for K-means optimality. Therefore, in this
section, I will introduce the technique and transfer it into a specific problem ac-
cording to [2]. Then to solve this problem, they gave a subroutine called Power
Iteration Detector of the certificate algorithm.

According to [2], there is a general technique to certify global optimality for
optimization problem. There are three essential components considered in this
technique:

(1) A fast non-convex solver which generates the optimal solution with
high probability (under some reasonable probability distribution of problem
instances).

(2) A convex relaxation that is tight with high probability (under the same
distribution).

(3) A fast method of computing a certificate of global optimality for the
output of the non-convex solver in (1) by exploiting convex duality with the
relaxation in (2).

Now, let’s analyze this technique for K-means particularly. For (1), we have
already have a non-convex solver for K-means, which is Lloyd’s algorithm. For
(2), in the last section, we have shown that 0-1 SDP relaxation given in [1] is
actually typically tight with high probability under the stochastic ball model.
Therefore, why we need to invent the algorithm is because we need to tackle
(3). After giving the algorithm, we can use the above-mentioned technique to
check the optimality for K-means.

For tackling (3), we can transfer it equivalently to the following problem:

9

Problem 6 Given a symmetric matrix A ∈ Rn×n and an eigenvector v of A,
determine whether the span of v is the unique leading eigenspace, that is , the
corresponding eigenvalue λ has multiplicity 1 and satisfies |λ| > |λ′| for every
other eigenvalue λ′ of A.

where A = z
N 11T + PΛ⊥ZPΛ⊥ . All the symbols in it are from the following

theorem:

Theorem 7 Take X of the form (18), and let PΛ⊥ denote the orthogonal pro-
jection onto the orthogonal complement of the span {1At}kt=1. Then there exists
an explicit matrix Z = Z(D,X) and scalar z = z(D,X) such that X is a
solution to the semidefinite relaxation (17) if

PΛ⊥ZPΛ⊥ � zPΛ⊥ .

To solve the Problem 6, we need to apply the power method: Let A ∈ Rn×n

be a symmetric matrix with eigenvalues {λi}ni=1 (counting multiplicities) sat-
isfying |λ1| > |λ2| ≥ . . . ≥ |λn|, and with corresponding orthonormal eigen-
vectors {vi}ni=1. Pick a unit-norm vector q0 ∈ Rn and consider the power
iteration qj+1 = Aqj/‖Aqj‖2. If q0 is not orthogonal to v1, then (vT1 qj)

2 ≥

1−
(

(vT1 q0)−2 − 1
)(

λ2

λ1

)2j

.

The power method is typically used to find a leading eigenvector, but for
K-means problem, we have got the eigenvector v. What our task is to determine
whether v is the unique leading eigenvector.

For describing the algorithm clearly, I will give the simple intuitive of how
the algorithm comes from. Consider that when we run the power method from
a random initialization, such as that of the centroid in K-means, and it con-
verges to v coincidently, then this would have been a remarkable coincidence if
v were not the unique leading eigenvector. Since we will only run finitely many
iterations, how do we determine when we are sufficiently confident? Given a
symmetric A ∈ Rn×n in Problem 6, and a unit eigenvector v of A, consider the
hypotheses

H0 : span(v) is not the unique leading eigenspace of A,

H1 : span(v) is the unique leading eigenspace of A.
(20)

To test these hypotheses, pick a tolerance ε > 0 and run the power iteration
detector. This detector terminates either by accepting H0 or by rejecting H0

and accepting H1. We say the detector fails to reject H0 if it either accepts
H0 or fails to terminate. For the detailed analysis of the the detector, please
see Section 3.1 in [2]. Next, I give the algorithm as follows.

10

Algorithm 1: Power iteration detector

Input: Symmetric matrix A ∈ Rn×n, unit eigenvector v ∈ Rn, tolerance
ε > 0

Output: Decision of whether to accept H0 or to reject H0 and accept
H1 as given in (20)

λ← vTAv ;
Draw q uniformly at random from the unit sphere in Rn ;
while no decision has been made do

if |qTAq| > |λ| then
Print ”accept H0”

else if (vT q)2 ≥ 1− ε then
Print ”reject H0 and accept H1”;

q ← Aq/‖Aq‖2;

For the result of this checking algorithm, please see the experiment section.

2.2.4 A fast K-means solver for two clusters

In the last section, I gave the algorithm to check whether the solution for K-
means algorithm is global optimal under a special model, stochastic ball model.
It turns out that Peng and Wei’s SDP relaxation is tight in this kind of data
model. Now according to [1] and [2], there is another way to relax the K-means
problem (9). Based on this relaxation, [2] devised a new algorithm to solve the
K-means problem with k = 2 under the stochastic ball model. In this section, I
follow [2], to introduce the relaxation and then the algorithm.

Recall that the 0-1 relaxation of K-means problem is

minimization Tr(DX)

subject to Tr(X) = k,X1 = 1, X ≥ 0, X � 0
(21)

Then we can get the spectral clustering by discarding the constraint X ≥
0. To get our new relaxation, first we define a m×N matrix Φ = [x1, x2, . . . , xN]
by the following equation,

Dij = ‖xi − xj‖22 = ‖xi‖22 − 2xTi xj + ‖xj‖ = (ν1T − 2ΦTΦ + 1νT)ij (22)

where ν = ‖xj‖22 is the N × 1 vector. It is easy to see that Φ is the matrix
whose column is the data point. Without loss of generality, we assume that the
data set is centered at the origin, so Φ1 = 0. With D = ν1T − 2ΦTΦ + 1νT and
two constraints in (21),X = XT and X1 = 1, we can get the objective function
of another format:

Tr(DX) = Tr(ν1T − 2ΦTΦ + 1νT)

= Tr(ν1TXT)− 2Tr(ΦTΦX) + Tr(X1νT)

= 2νT 1− 2Tr(ΦTΦX)

(23)

So minimizing Tr(DX) is equivalent to maximizing Tr(ΦTΦX). In addition,
the feasible X in the relaxation is precisely the rank-k N×N orthogonal projec-
tion matrix satisfying X1 = 1. Therefore, X can have the form X = 1

N 11T + Y

11

where Y is a rank-(k-1) N ×N orthogonal projection matrix satisfying Y 1 = 0.
Note that 1

N 11T is constant. In addition, we discard Y 1 = 0 as well, so that we
can get the next equivalent relaxation of (21):

minimization Tr(ΦTΦY)

subject to Y T = Y, Y 2 = Y, Tr(Y) = k − 1
(24)

Note that after our initial goal is not to find Y ! What problem we want to
solve is to get the corresponding X. Therefore, after figuring out Y , we need
to recover it back to X = 1

N 11T + Y and then round it to a closest member of
the feasibility region in (21). As mentioned above, here we only care about the
exact recovery under the stochastic ball model.

Now, we can use the (24) for getting our fast algorithm for k = 2 clusters.
When k = 2, Y has the form Y = yyT , where y is the leading unit eigenvector
of ΦTΦ. We need to find a matrix of form 1

|A|1A1TA + 1
|B|1B1TB with A ∪ B =

{1, . . . , N} that is close to 1
N 11T + yyT . From this, since there are two clusters

for the stochastic ball model, it is natural to consider the following:

Aθ = {i : yi < θ}, Bθ = Acθ

for some threshold θ. Here, we choose the θ which minimized the K-means
objective of (Aθ, Bθ). Order the indices so that y1 ≤ · · · ≤ yN . Then we need
to minimize the following function:

f(i) =
1

i

Aθ︷ ︸︸ ︷
i∑

j=1

i∑
j′=1

‖xj − xj′‖22︸ ︷︷ ︸
vi

+
1

N − i

Bθ=Acθ︷ ︸︸ ︷
N∑

j=i+1

N∑
j′=i+1

‖xj − xj′‖22︸ ︷︷ ︸
vci

.

We can expand the square and distribute sums and we can get

vi+1 = vi + 2

i∑
j=1

‖xj‖22 − 4xTi+1

i∑
j=1

xj + 2i‖xi+1‖22

vci+1 = vci + 2

N∑
j=i+1

‖xj‖22 − 4xTi+1

N∑
j=i+1

xj + 2i‖xi+1‖22

So we can iteratively compute the vi’s and vci ’s before computing the f(i)’s
and then minimizing as the following algorithm does

Algorithm 2: Spectral k-means clustering (for two clusters under
stochastic ball model)

Input: m×N matrix Φ = {x1, . . . , xN} of points to be clustered
Output: Clusters A ∪B = 1, . . . , N
Subtract centroid 1

N

∑N
i=1 xi from each column of Φ to produce Φ0 ;

Compute the leading eigenvector y of ΦT0 Φ0 ;
Find θ that minimizes the k-means objective of ({i : yi < θ}, {i : yi ≥ θ});
(A,B)← ({i : yi < θ}, {i : yi ≥ θ}) ;

12

Now through the following analysis, we can get the conclusion that the
overall operations for finding the optimal (Aθ, Bθ) is O((m + logN)N), which
is much better than the Lloyd’s algorithm.

Time complexity analysis
1. Sort the entries y1 ≤ · · · ≤ yN in O(NlogN) operations.
2. Iteratively compute

s1(i) =

i∑
j=1

xj , s
c
j(i) =

N∑
j=i+1

xj , s2(i) =

i∑
j=1

‖xj‖22, sc2(i) =

N∑
j=i+1

‖xj‖22

for every i ∈ {1, . . . , N − 1} in O(mN) operations.
3. Compute v1 = 0 and vi+1 = vi+ 2s2(i)−4xTi+1s1(i) + 2i‖xi+1‖22 for every

i ∈ {1, . . . , N − 2} in O(mN) operations.
4. Compute vcN−1 = 0 and vci−1 = vci + 2sc2(i)− 4xTi+1s

c
1(i) + 2(N − i)‖xi‖22

for every i ∈ {N − 1, . . . , 2} in O(mN) operations.
5. Compute f(i) = vi/i + vci /(N − i) for every i ∈ {1, . . . , N − 1} in O(N)

operations.
6. Find i that minimizes f(i) and output {1, . . . , i} and {i + 1, . . . , N} in

O(N) operations.
Therefore, we can see that the spectral algorithm requires only quasilin-

ear computational complexity O((m + logN)N), which guarantees that under
the stochastic ball model, it performs better than Lloyd’s algorithm. For the
experiment result, please see the experiment chapter.

2.3 Clustering subgaussian mixture data by SDP

In the last part, I followed [2] to give the result that under the stochastic ball
model, Peng and Wei’s 0-1 SDP relaxation is tight with high probability. Then
I introduced an algorithm to quickly check whether the solution of K-means
is close to the global optimum. In addition, a well-performance algorithm was
given for clustering when k = 2 under the stochastic ball model with SDP
relaxation (24).

We have known that the stochastic ball model allows the SDP relaxation
(17) to be tight, and all algorithms mentioned above perform well under such
a model. However, the presumption that the data conform to the stochastic
ball model is strong and the real data may be not constrained by this model.
Hence, can SDP relaxation still guarantee the tightness for the realistic data?
How to find a more general algorithm to tackle the k-means problem for the
real data? To answer those questions, I will follow the paper [3] to explore these
questions under the subgaussian mixtures model, whose special cases include the
stochastic ball model and Gaussian mixture model. In this section, I introduce
a model-free relax-and-round algorithm for K-means cluster based on the SDP
(17) and provide a generic method for proving the performance guarantees for
this algorithm, and analyze this algorithm under the context of subgaussian
mixture models. In all this parts, I think the explanation in [3] to interpret
the SDP relaxation as the denoised version of the data is interesting, so I will
emphasize this later.

13

2.3.1 Subgaussian mixture model and relax-and-round algorithm

First, I will give the definition of the subgaussian mixture model, and then use
the same chain to introduce the relax-and-round algorithm for this model. I
leave the analysis of the algorithm to the next section.

Definition 8 (subgaussian mixture model) For each t ∈ [k] = {1, . . . , k},
let Dt be an unknown subgaussian probability distribution over Rm, with first
moment γt ∈ Rm and second moment matrix with largest eigenvalue σ2

t . For
each t, an unknown number nt of ransom points {xt,i}i∈[nt] is drawn indepen-
dently form Dt. Given the points {xt,i}i∈[nt],t∈[k] along with with the model
order k, the goal is to approximate the centers {γt}t∈[k].

It is easy to see from Definition 3 and Definition 8 that stochastic ball
model is the subset of subgaussian mixture model.

Although we have shown without proof that SDP (17) is tight for the stochas-
tic ball model, it is no longer the case in the subgaussian mixture model. How-
ever, the authors of [3] interpreted the result optimizer of SDP as the denoised
version of the raw data, and can continue to cluster based on this.

Now, let’s illuminate this. P denotes the m×N matrix whose columns are
the points {xt,i}i∈[nt],t∈[k]. This definition is the same as Φ in (24). It can be
showed that when X has the form (18), which we call it integral, for each t ∈ [k],
PX has |At| columns equal to the centroid of points assigned to At. That is,

PX = [γ̂1 · · · γ̂1︸ ︷︷ ︸
|A1| copies

γ̂2 · · · γ̂2︸ ︷︷ ︸
|A2| copies

· · · γ̂k · · · γ̂k︸ ︷︷ ︸
|Ak| copies

]

Then, [3] noticed that every SDP-feasible matrix X ≥ 0 satisfies XT 1 =
X1 = 1 as in (17), and so XT is a stochastic matrix, meaning each column of
PX is still a weighted average of columns from P . If the SDP relaxation (17)
were close to being tight, then the SDP -optimal X would make the columns of
PX close to the k-means-optimal centroids. Intuitively, we can interpret PX
as a denoised version of the original data P , and we can use another method to
get the good estimates for the original k-means-optimal centroids.

According to what says above, we can get the algorithm to first run SDP to
get the denoised version PX of the raw data P , then cluster the PX to get a
good estimates for k centroids.

Algorithm 3: Relax-and-round k-means clustering procedure

Input: m×N data matrix P = [x1, . . . , xN]
Output: Clusters of the denoised data matrix PX
Compute distance squared matrix D defined by Dij = ‖xi − xj‖;
Solve k-means semidefinite program (17), resulting in optimizer X ;
Cluster the columns of the denoised data matrix PX

In the first step, we can use the columns in the raw data matrix P to get the
distance matrixD, then we can use the above algorithm based on SDP relaxation
to get the optimizer X. In the third step, we can use the Lloyd’s algorithm to
cluster the denoised data in order to get the good estimators of centroids. Here,
we use Lloyd’s algorithm is because after the process of denoising, the number

14

of the data decreases greatly; therefore, as stated before, we can use Lloyd’s
algorithm on a small dataset. It is proved that this algorithm works well as we
expected.

2.3.2 Analysis of the relax-and-round algorithm

Followed paper [3], I will show succinctly in this section that the relax-and-round
algorithm guarantees that it will recover the centroid of k-means problem under
the subgaussian mixture model. There needs three steps to achieve this goal as
stated in the paper.

Approximation Given the data points for the cluster t, x1 = {xt,1, . . . , xt,nt},
drawn independently from Dt, consider the squared-distance matrix D and the
optimizer XD of the SDP relaxation (17). We first construct a ”reference” ma-
trix R such that under the subgaussian model, when D = R, the optimizer XR

is tight. Take 4ab = ‖γa − γb‖2, and let XD denote the minimizer of (17), and
XR denote the minimizer of (17) when D is replaced by the matrix R. Now, we
define the matrix R as follows:

(Rab)ij = ξ +42
ab/2 +max{0,42

ab/2 + 2〈ra,i − rb,j , γa − γb〉} (25)

where rt,i = xt,i − γt and ξ > 0. Now, according to the observation, the
reference matrix R (25) enjoys the following property: Let 1a ∈ RN denote the
indicator function for the indices i corresponding to points xi drawn from the
a-th subgaussian. If γa 6= b, then XR =

∑k
t=1

1
nt

1t1
T
t . Please note that here,

XR has the same form of (18), not XD. We can consider XR as the ground
truth and XD as the estimator of optimizer XR after the process of denoising.

The following theorem can ensure that the solution from solving SDP (17)
is actually close to the ground truth.

Theorem 9 For the fixed ε, η > 0, there exist universal constants C, c1, c2, c3
such that if

α = nmax/nmin ≤ k ≤ m and N > max{c1m, c2log(2/η, log(c3/η))},

then, ‖XD −XR‖2F ≤ ε with probability ≥ 1− 2η provided

42
min ≥

C

ε
k2ασ2

max

where 4min = mina 6=b‖γa − γb‖2 is the minimal cluster center separation.

Denoising Now, from Theorem 9, we can see that XD is close to the
ground truth. What we need to do next is convert XD to an estimate for the
centers {γt}t∈[k]. Let P and XR be the same definition as stated before. Then
PXR is an m × N matrix whose (a, i)th column is γ̂a, the centroid of the ath
cluster, which converges to γa as N →∞, and PXD is a denoised version of the
points. By the next theorem, we can guarantee that the algorithm denoiding in
the regime K �

√
m.

Theorem 10 Let ca,i denote the (a,i)th column of PXD. Assume the points{xa,i}i∈[n]

come from N (γa, σ
2Im) in Rm for each a ∈ [k]. If kσ ≤ 4min ≤ 4max ≤ Kσ,

15

then

1

N

k∑
a=1

n∑
i=1

‖ca,i − γ̂a‖ ≤ K2σ2

with high probability as n→∞.

Rounding In the Algorithm 3, there is no clue how to ”round” the data
from what we got from SDP. Actually, there is a simple scheme provided to
do this: for every cluster, do the following: (1) vi ← denoised point with most
neighbors; (2) delete denoised point and neighbors. After this, we can see vi as
the ”true” centroid for the cluster i.

Under the same hypothesis as Theorem 10, we have that there exists a
permutation π on {1, . . . , k} such that

1

k

k∑
i=1

‖vi − γ̂π(i)‖22 ≤ k2σ2 (26)

where vi is what Algorithm 3 chooses as the ith center estimation. Hence,
we can estimate Gaussian centers with mean squared error O(k2σ2) provided
the centers have pairwise distance Ω(kσ).

3 Experiment results and interpretation

All experiments are implemented on Lenovo Thinkpad T470p, with 16GB mem-
ory, using Matlab R2017b.

3.1 Comparison of solvers for two clusters

This experiment corresponds to the section 2.2.4, where I showed a fast K-
means solver for two clusters under the stochastic ball model. The results are
gotten after implementing Algorithm 2.

First, to see the clustering results, please see Figure 1. There are four figures
showing four experiments, during which the data points are generated indepen-
dently.

Then in order to prove that the Algorithm 2 performs well and show that
SDP (17) is actually tight, I compare it with the Lloyd’s Algorithm from both
correctness and speed.

To compare the correctness of them, I used misclass rate, which is defined
as follows:

ε =
of miscluster data

of total data

Since the Lloyd’s algorithm has the high time complexity (which will be shown
in the speed comparison), I only tested them on a relatively small dataset, about
26 data points, and did every method 10 times. Table 1 shows the worst and
best misclass rate for both methods.

We can see that in both cases, spectral clustering algorithm in paper [2]
has the approximately same misclass rate as Lloyd’s algorithm. Thus, we can
conclude that this algorithm works well and also the SDP (17) is actually tight
for K-means problem.

16

Figure 1: Results for clustering into two clusters. The data points in each figure
are generated independently. Different colors represent different clusters.

Table 1: Misclass rate for algorithms

Algorithm worst rate best rate
Lloyd 0.2151 0.0963
Spectral 0.2052 0.0971

Next, let’s see the result of the comparison of the speed, which was used
the data of size N = {23, . . . , 216}. In the theory part, we have known that
the Lloyd’s algorithm is NP-hard, which shares a very high time complexity.
Therefore, I only tested this algorithm until 26 data points. In addition, after the
analysis, it was shown in the Section 2.2.3 and 2.2.4 that the time complexity
of spectral clustering algorithm and power iteration detector is quasilinear. To
show this, I add a linear line representing O(N) as a reference.

From what is shown in the Figure 2, it is easy to see the quasilinear time-
complexity of spectral clustering algorithm and power detector algorithm. Com-
bining the comparison of speed, we can see that spectral clustering algorithm is
better than Lloyd’s algorithm under the stochastic ball model.

3.2 Relax-and-round algorithm

In this section, I will show the results gotten from using the relax-and-round
algorithm to cluster the more general data model. Because the figures about
the algorithm are all in this section, the denoising process mentioned before is
much clearer.

As stated in the Section 2.1.3, the matrix X has the form that all the same
cluster are shuffled together into a block on the diagonal. Figure 3 is the result
optimizer X, so the form of X is more intuitive.

17

Figure 2: . Time complexity comparison. From the top to the bottom: Lloyd,
O(N), spectral, power detector.

Figure 3: Solution matrix X from solving SDP relaxation, which has the form
(18).

Next, recall the interpretation of the Algorithm 3 given by [2]. With the
next figures, it is easier to understand it.

In the first figure in the Figure 4, it is the raw data before solving SDP for
subguassian mixture data model. The red points are the true centroids. In the
second figure, there are ”denoised” version of the original data shown in the first
figure. It is clear now that after running SDP in Algorithm 3, what remains
is only the true centroid and some close neighbors around them. Therefore, to
find the true center, step 3 in the algorithm clusters the denoised version of data
to find the true centroids, which are red points in the figure. Then depend on

18

Figure 4: The process of ”denoising”.

these centers to cluster all the data.

4 Acknowledgements

The author of this report thanks Soledad Villar for giving an intuitive collo-
quium about her recent works of using SDP to solve K-means problem, which
motivated the author to read papers about this interesting field and write this
report. The author also thanks professor Michael L.Overton, who gave an en-
tirely amazing and excellent course in this semester, through which the author
supplemented a lot of essential mathematical knowledge and learnt a lot for
convex and nonsmooth optimization methods, which are very significant for the
author’s researach interest, machine learning.

References

[1] J.Peng and Y.Wei. Approximating k-means-type clustering via semidefinite
programming. SIAM Journal on Optimization,18(1):186-205, 2007.

[2] T.Iguchi, D.G.Mixon, J.Peterson, and S.Villar. Probably certifiably correct
k-means clustering. Mathematical Programming, to appear, 2015.

[3] D.G.Mixon, S.Villar, and R.Ward. Clustering subgaussian mixtures by
semidefinite programming. Information and Inference, to appear, 2016.

[4] P.Awasthi, A.Bandeira, M.Charikar, K.Ravishankar, S.Villar, and R.Ward.
Relax, no need to round: Integrality of clustering formulation.
http://arxiv.org/abs/1408.4045, 2014.

[5] S.Boyd and L.Vandenberghe. Convex Optimization. 2004.

19

